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a b s t r a c t

This paper investigates optimization of operational strategies of an industrial ethanol fermentation

process. One of the challenges associated with this type or process is that most of the measurements

are only taken sporadically, thereby complicating process monitoring and optimization. The one

exception to this rule involves temperature measurements, which are readily available. However, an

existing model of the plant investigated in this paper does not include an energy balance and,

accordingly, the temperature measurements cannot be used to estimate model parameters. This paper

addresses these deficiencies and proposes modifications to an existing ethanol fermentation model. The

proposed changes include the derivation of an energy balance, modification of the reaction kinetics to

include additional inhibition terms, and also estimation of model parameters from industrial data. The

new model is validated against plant data and then used for optimization of the process operations. It is

shown that modifications of the input profiles for the cooling rate and the glucoamylase addition can

lead to an approximately 10% increase in ethanol yield. These are promising results, even though these

findings will ultimately need to be validated during real plant operations.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fuel-grade ethanol can be produced from plants such as maize,
sugar cane, or sweet sorghum. Producing bioethanol has one
potential advantage in that the amount of greenhouses gases
absorbed during the growing process can reduce the gases
produced during the combustion process. Furthermore, ethanol
can be used as a substitute for fuel additives (Lin & Tanaka, 2006).

As the world’s largest biofuel producer, the U.S. is producing
approximately 57 billion liters of ethanol in 2012, and the pro-
duction is estimated to reach 136 billion liters in 2022 (Walker,
2012). Most of the fuel-grade ethanol in the U.S. is produced from
maize-based plants, and more than 90% of the plants make use of
the dry mill process, where the whole grain is processed in four
steps: milling, liquification, simultaneous saccharification and
fermentation (SSF), and distillation (RFA. Accelerating Industry
Innovation, 2012). Simultaneous saccharification and fermenta-
tion is the most important step in the production process. In this
process, dextrin is broken down into fermentable dextrose by
glucoamylase, and dextrose is converted into ethanol by yeast,
e.g., S. cerevisiae. The theoretical maximum yield of ethanol from
maize starch is 0.364 (kg ethanol/kg dry corn) (Patzek, 2006),

which translates to an ethanol concentration of over 160 (g/l)
after SFF in the batch fermenter. Currently, the most advanced
commercial plants claim to produce approximately 150 (g/l) of
ethanol after SSF, however, the average yield from these plants
using traditional techniques is less than 140 (g/l). Improving the
operations of the SSF process based on current facilities is
undoubtedly the most economic approach to increase ethanol
yield, but optimization of SSF operations requires a good under-
standing of the process, usually represented by data and models.

Models of the SSF process consist of dynamic balances of
components such as the concentrations of yeast, dextrose, ethanol,
and other substances. A variety of models of different complexity
have been developed, ranging from relatively simple models (Fogler,
2005), to quite detailed ones (De Andres-Toro et al., 1998; Lee, Kim, &
Rhee, 1992; Ochoa, Yoo, Repke, Wozny, & Yang, 2008). The main
differences in the complexity of the models results from

� Addition of intermediate steps in the saccharification process;
� Use of more appropriate kinetics reflecting yeast growth rate,

substrate inhibition, and product inhibition;
� Study of the temperature influence on enzyme and yeast

activity.

The early work of adding intermediate steps in the sacchar-
ification process was done by Lee et al. A kinetic model with a
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series of Michaelis–Menten equations has been proposed by
introducing a degree of polymerization (Lee et al., 1992). This
approach has subsequently been incorporated into several other
models to provide a more detailed description of the saccharifica-
tion process (Murthy, Johnston, Rausch, Tumbleson, & Singh,
2012). The kinetics of SSF have also been extensively studied:
the growth rate of yeast and the conversion rate between
different substances are usually expressed by a Monod equation,
while Moser and Tessier growth laws have alternatively been
used to provide better agreement with experimental data at the
beginning or end of fermentation. Also, several different types of
equations have been used to account for substrate and product
inhibition in various models (Mulchandani & Luong, 1989).

The operating temperature has been found to have a signifi-
cant impact on the process. Ethanol fermentation is an exother-
mic process and temperature changes will significantly affect
enzyme and yeast activity. This influence of the temperature on
enzyme and yeast activity is usually expressed using Arrhenius-
type equations such as those presented by Carvalheiro et al.
(Banat, Nigam, Singh, Marchant, & McHale, 1998; Phisalaphong,
Srirattana, & Tanthapanichakoon, 2006). Due to this temperature
dependence, glucoamylase has an optimum activity at 140 1F in
the saccharification process, while the optimal temperature for
yeast growth and ethanol fermentation is in the range of 84–
94 1F. These competing optimal process temperatures for the SSF
process highlight the complexity of selecting an optimal tem-
perature profile over the course of a batch. It should be noted that
most commercial plants hold the temperature constant between
86 and 90 1F.

One significant challenge for the use of SSF models in commercial
plants is the lack of data, since lag yeast, active yeast, and dead yeast
cannot be measured independently (dye or counting numbers using a
microscope have proven to be unreliable for this system). In addition,
fed-batch fermenters are operated as a ‘‘black box’’. Dextrose and
ethanol concentrations can be measured only every few hours and
other intermediate substances are difficult to measure. Due to this
lack of data, it is non-trivial to accurately estimate model parameters
from plant data, i.e., a model may fit existing data well, but it is not
possible to determine if the parameters are within a reasonable range

as the models are overparameterized. The one process variable that is
measured often in commercial plants is the process temperature,
however, an energy balance is required if these temperature data are
to be used for parameter estimation or monitoring of any quantity
other than just the temperature. Unfortunately, none of the existing
models for SSF include an energy-balance equation as SSF is a
complex process and energy balances require a significant number
of parameters and relationships to describe the thermo-physical
properties. This paper addresses the above-mentioned challenges by

� Expanding an existing model to also include an energy-balance
equation with new parameters that are to be estimated from
available data;
� Establishing the relationship between cooling water flowrate,

temperature, and active yeast concentration, so that tempera-
ture data can be used to estimate unknown parameters arising
from balance equations other than the energy balance;
� Computing optimal input profiles for a fermenter used for ethanol

fermentation by using the developed model and a simultaneous
approach for solving the dynamic optimization problem.

The authors believe that this combination of a model, which is
based upon industrial plant data, with the determination of an
optimal input profile for the manipulated variables during a batch
is of interest to practitioners and researchers alike. The paper is
structured as follows: preliminaries about the process, the model, and
dynamic optimization are presented in Section 2. Section 3 discusses
the presented model in detail, including the estimated parameters.
The optimization problem for determining optimal input profiles is
formulated and solved in Sections 4 and 5 presents the conclusions.

2. Preliminaries

2.1. Description of industrial ethanol fermentation

Fuel-grade ethanol is produced in one of two ways, using
either the wet mill or dry mill process. Wet milling involves

Nomenclature

FProp Flowrate from the propagation tank (l/h)
F0

Prop Designed flowrate from the propagation tank (l/h)
tstart Time point that the enzyme starts to flow into the

fermenter (h)
tdrop Time point that the enzyme stops flowing into the

fermenter (h)
FSlurry Flowrate from the liquification tank (l/h)
F0

Slurry Designed flowrate from the liquification tank (l/h)
V Liquid volume in the fermenter (l)
Vf ull Volume of the fermenter (l)
VGA Volume of the glucoamylase in the fermenter (l)
FGA Flowrate of glucoamylase (l/h)
yGA Concentration of glucoamylase in the fermenter (g/l)
rGA Density of glucoamylase (g/l)
yDex Concentration of dextrin in the fermenter (g/l)
yIN

Dex Concentration of dextrin from liquification tank (g/l)
ydextrose Concentration of dextrose in the fermenter (g/l)
yactive Concentration of active yeast in the fermenter (g/l)
ylag Concentration of lag yeast in the fermenter (g/l)
y0

lag Concentration of lag yeast from propagation tank (g/l)
yEtOH Concentration of ethanol in the fermenter (g/l)

y0
EtOH Concentration of ethanol from liquification tank (g/l)

T Temperature inside the fermenter (1F)
Tref Reference temperature used to calculate internal

energy (1F)
Hf eed Internal energy from the slurry flow and yeast flow

(Btu/h)
Hcool Heat taken away by cooling facility (Btu/h)
Fcool Flowrate of cooling water (gal/h)
r Density of the liquid in the fermenter (g/l)
CP Heat capacity of the liquid in the fermenter (Btu/1F/l)
rGA Dextrin-dextrose conversion rate (h�1)
ma Dextrose-ethanol conversion rate (h�1)
mmax

a Maximum dextrose-ethanol conversion rate (h�1)
mlag Lag yeast-active yeast conversion rate (h�1)
mmax

lag Maximum lag yeast-active yeast conversion rate
(h�1)

ms Dextrose consumption rate (h�1)
mmax

s Maximum dextrose consumption rate (h�1)
mx Active yeast growth rate (h�1)
mmax

x Maximum active yeast growth rate (h�1)
rd Active yeast death rate (h�1)
f a Ethanol inhibition factor
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