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a b s t r a c t

In this work, we propose a conceptual framework for integrating dynamic economic optimization and

model predictive control (MPC) for optimal operation of nonlinear process systems. First, we introduce

the proposed two-layer integrated framework. The upper layer, consisting of an economic MPC (EMPC)

system that receives state feedback and time-dependent economic information, computes economic-

ally optimal time-varying operating trajectories for the process by optimizing a time-dependent

economic cost function over a finite prediction horizon subject to a nonlinear dynamic process model.

The lower feedback control layer may utilize conventional MPC schemes or even classical control to

compute feedback control actions that force the process state to track the time-varying operating

trajectories computed by the upper layer EMPC. Such a framework takes advantage of the EMPC ability

to compute optimal process time-varying operating policies using a dynamic process model instead of a

steady-state model, and the incorporation of suitable constraints on the EMPC allows calculating

operating process state trajectories that can be tracked by the control layer. Second, we prove practical

closed-loop stability including an explicit characterization of the closed-loop stability region. Finally,

we demonstrate through extensive simulations using a chemical process model that the proposed

framework can both (1) achieve stability and (2) lead to improved economic closed-loop performance

compared to real-time optimization (RTO) systems using steady-state models.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Economic optimization of chemical processes has traditionally
been addressed through a two-layered architecture. In the upper
layer, real-time optimization (RTO) carries out economic process
optimization by computing optimal process operation set-points
using steady-state process models. These set-points are used by
the feedback control systems in the lower layer, typically
designed via model predictive control (MPC) methods, to force
the process to operate on these steady-states (Backx, Bosgra, &
Marquardt, 2000; Marlin & Hrymak, 1997). MPC has been widely
adopted in the chemical process industry because of its ability to
optimally control multiple-input multiple-output nonlinear sys-
tems by solving an on-line optimization problem subject to input
and state constraints (Garcı́a, Prett, & Morari, 1989; Mayne,
Rawlings, Rao, & Scokaert, 2000) and minimizes a typically
quadratic performance index along a finite prediction horizon.
The main disadvantage of this traditional two-layer approach to

economic process optimization with RTO and MPC is that RTO
does not account for process dynamics or guarantee that the
computed set-points are reachable (Rawlings, Bonné, Jørgensen,
Venkat, & Jørgensen, 2008). In recent years, numerous calls for the
development of the so-called ‘‘smart manufacturing paradigm’’
have led to several attempts to integrate MPC and economic
optimization of chemical processes to deal with variable demand,
changing energy prices, variable feedstock, and product transi-
tions (Adetola & Guay, 2010; Backx et al., 2000; Tvrzská de
Gouvêa & Odloak, 1998; Engell, 2007; Kadam & Marquardt,
2007; Rawlings & Amrit, 2009; Zanin, Tvrzská de Gouvêa, &
Odloak, 2002).

Early attempts on integrating MPC and economic optimization
have primarily focused on two strategies: (1) integrating steady-
state optimization directly in the MPC as in Tvrzská de Gouvêa
and Odloak (1998), Zanin et al. (2002), and Yousfi and Tournier
(1991) and (2) a two-layer approach similar to traditional control
architectures with RTO and MPC that incorporates a dynamic
process model in place of a steady-state model in the upper layer
called dynamic real-time optimization (D-RTO) (Kadam &
Marquardt, 2007; Kadam et al., 2003; Würth, Hannemann, &
Marquardt, 2009, 2011; Würth, Rawlings, & Marquardt, 2009;
Zhu, Hong, & Wang, 2004). In recent work, the MPC has been
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extended to solve optimization problems with general economic
cost functions replacing the convectional quadratic cost of the
standard MPC. This combines dynamic economic process optimi-
zation and feedback control into one layer. Several economic MPC
(EMPC) schemes have been proposed (see Amrit, Rawlings, &
Angeli, 2011; Chen, Heidarinejad, Liu, & Christofides, 2012; Diehl,
Amrit, & Rawlings, 2011; Heidarinejad, Liu, & Christofides, 2012a,
2012b; Hovgaard, Larsen, Edlund, & Jørgensen, 2012; Huang,
Harinath, & Biegler, 2011; Ma, Qin, Salsbury, & Xu, 2012;
Rawlings & Amrit, 2009 and the references therein). In
Heidarinejad et al. (2012a), general methods were proposed to
design an EMPC using Lyapunov-based techniques capable of
optimizing closed-loop performance with respect to general
economic considerations for nonlinear systems. Moreover, this
approach allows for an explicit characterization of the set of
initial conditions whereby closed-loop stability and feasibility of
the EMPC optimization problem are guaranteed.

While the proposed EMPC approaches have demonstrated
closed-loop economic performance improvement, these
approaches treat dynamic economic process optimization and
control in a one layer approach. This shift from the traditional two
layer control paradigm to a one layer framework requires a
complete redesign of the existing control architectures. Addition-
ally, considering that EMPC must use a sufficiently large predic-
tion horizon to adequately account for a time-varying economic
cost, the EMPC optimization problem may not be solved fast
enough to control a process in real-time. While many D-RTO
structures have been proposed throughout the literature (for
example, Kadam & Marquardt, 2007; Würth et al., 2011; Zhu
et al., 2004), many of the two-layered D-RTO and MPC systems
proposed are characterized by a lack of rigorous theoretical
treatment including the constraints required on the upper level
dynamic economic optimization problem to guarantee that the
computed optimal time-varying reference state trajectories can
be tracked by the lower process control layer as well as an explicit
characterization of the set of initial conditions whereby closed-
loop stability and feasibility are guaranteed in the lower layer.

Accounting for these considerations, we design, in the present
work, a two-layered dynamic economic optimization and control
framework. In the upper layer, an EMPC is designed to compute
economically optimal time-varying state trajectories in an on-line
fashion using real-time measurements. In the lower layer, a LMPC
system is used to force the system to track the economically
optimal state trajectories taking advantage of its stability and
robustness properties (see Christofides & El-Farra, 2005; Mhaskar,
El-Farra, & Christofides, 2005, 2006; Muñoz de la Peña &
Christofides, 2008). Lyapunov techniques are used to characterize,
a priori, the set of initial conditions starting from where feasibility
and closed-loop stability are guaranteed. Through rigorous theo-
retical treatment, we prove practical closed-loop stability of the
proposed integrated dynamic economic optimization and control
framework. We demonstrate through extensive simulations using
a CSTR chemical process model with a time-dependent economic
cost function that such an integrated control paradigm can both
(1) render the closed-loop time-varying state evolution in a
bounded region and (2) perform economically better than tradi-
tional RTO systems using steady-state models.

2. Preliminaries

2.1. Notation

The operator 9 � 9 is used to denote the Euclidean norm of a
vector and 9 � 9Q denotes the weighted Euclidean norm of a vector
(i.e., 9x9Q ¼ xT Qx). A continuous function a : ½0,aÞ-½0,1Þ belongs

to class K if it is strictly increasing and satisfies að0Þ ¼ 0. We use
OrðxEÞ to denote the set OrðxEÞ :¼ feARnx 9Vðe,xEÞrrðxEÞg for a fixed
xEAG. The symbol diagðvÞ denotes a square diagonal matrix with
diagonal elements equal to the vector v and the symbol

proj
G
ðxÞ

denotes the projection of x onto the set G.

2.2. Class of process models

In this work, we consider the class of nonlinear systems
described by the following state-space model:

_xðtÞ ¼ f ðxðtÞ,uðtÞ,wðtÞÞ ð1Þ

where xðtÞARnx is the state vector, uðtÞAU �Rnu is the manipu-
lated input vector, wðtÞARnw is the disturbance vector. The inputs
are restricted to be in a nonempty convex set defined as
U :¼ fuARnu 99ui9rumax

i , i¼ 1, . . . ,nug. We assume that f is locally
Lipschitz on Rnx � Rnu � Rnw and the disturbance vector is
bounded

9wðtÞ9ry ð2Þ

where y40.
We propose a dynamic economic optimization and control

framework to force the system of Eq. (1) to track slowly time-
varying operating policies. The slowly time-varying trajectory
vector is denoted as xEðtÞAG�Rnx , where G is a compact (closed
and bounded) set and the rate of change of the reference
trajectory is bounded by

9 _xEðtÞ9rgE ð3Þ

We define the deviation between the actual state trajectory x(t)
and the slowly-varying reference trajectory xE(t) as

eðtÞ ¼ xðtÞ�xEðtÞ ð4Þ

with its dynamics described by

_eðtÞ ¼ f ðxðtÞ,uðtÞ,wðtÞÞ� _xEðtÞ

¼ f ðeðtÞþxEðtÞ,uðtÞ,wðtÞÞ� _xEðtÞ

:¼ gðeðtÞ,xEðtÞ, _xEðtÞ,uðtÞ,wðtÞÞ ð5Þ

We assume that the system of Eq. (5) has a continuously
differentiable, isolated equilibrium for each fixed xEAG (i.e., there
exists a uE for a fixed xE to make e¼0 the equilibrium of Eq. (5))

gð0,xE,0,uE,0Þ ¼ 0 ð6Þ

Remark 1. The assumption that the system of Eq. (1) has an
equilibrium for every fixed xEAG is a necessary assumption to
guarantee that the reference trajectory can be tracked. While this
assumption does require the system to have enough degrees of
freedom (e.g., one manipulated input for each time-varying state
to track), a system with many states most likely will not include
all states in the economic cost. In this case, only a few states
would be forced to track reference trajectories. If we remove this
assumption and the system is driven away from perfectly tracking
the slowly-varying trajectory xE(t), due to a disturbance for
example, no guarantee can be made that the system will ever
be driven back to the slowly-varying reference trajectory.

2.3. Stability assumption

We need to make certain assumptions about the system of
Eq. (5) to guarantee that the slowly-varying state trajectory xE(t)
can be tracked. For each fixed xEAG, we assume that there exists a
Lyapunov-based controller hðeðtÞ,xEÞ that makes the origin e¼0 of
the nonlinear system given by Eq. (5) without uncertainty
(wðtÞ � 0) asymptotically stable under continuous implementation.
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