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a b s t r a c t

Most of the existing approaches to estimation and control are based on the premise that regular

sampling is used. However, in some applications, there exists strong motivation to use ‘‘event’’ rather

than ‘‘time’’ based sampling. For example, in sensor networks, it is often desirable to send data only

when ‘‘something interesting’’ happens. This paper explores some of the issues involved in event based

sampling in the context of non-linear filtering. Several examples are presented to illustrate the ideas.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Most current implementations of digital control and estima-
tion use regular sampling with fixed period T, see e.g. Middleton
and Goodwin (1990), Feuer and Goodwin (1996), Åström and
Wittenmark (1990) and Hristu-Varsakelis and Levine (2005).
However, there is often strong practical motivation to change
this paradigm to one in which one only takes samples ‘‘when
something interesting’’ happens. This changes the focus to, so-
called, ‘‘event based’’ sampling. In this paper, we consider that a
measurement is sent only when the measured variable crosses a
given threshold. Thus the sampling is not regular. The latter
strategy has many advantages including conserving valuable
communication resources in the context of networked control
or sensor networks.

There is a growing literature on event based sampling. An early
seminal paper was that of Ȧström and Bernhardsson (2002). Other
related publications include Årzén (1999), Anta and Tabuada (2009,
2008), Byrnes and Isidori (1989), Otanez, Moyne, and Tilbury (2002),
Tabuada (2007), Le and McCann (2007), McCann and Le (2008),
Pawlowski et al. (2009), and Xu and Cao (2011). As pointed out in
Anta and Tabuada (2010), event based sampling and control are
particularly attractive for non-linear systems since the nature of the
system response can be operating point dependent and this may

mean that different sampling strategies are desirable at different
operating points.

The current paper examines some of the issues related to event
based sampling for non-linear filtering. An event based non-linear
filter is developed. It is also shown, how such a filter can be imple-
mented using approximate non-linear filtering algorithms including
particle filtering (Chen, 2003; Handschin & Mayne, 1969; Schön,
2006) and minimum distortion filters (Cea, Goodwin, & Feuer, 2010;
Goodwin, Feuer, & Müller, 2010).

One issue that needs careful consideration in the context of
event based filtering is that of the anti-aliasing filter. It is argued
here that an alternative viewpoint needs to be adopted for the
design of this filter.

The layout of the remainder of this paper is as follows: Section 2
reviews continuous time stochastic models. Section 3 describes
basic sampling strategies. Section 4 describes the core ideas behind
regular and event based sampling. Section 5 describes sampled data
models. Section 6 reviews the traditional discrete non-linear filter.
Section 7 details modifications that are required in the discrete non-
linear filter to incorporate event based sampling. Section 8 briefly
describes approximate discrete non-linear filters. Section 9 presents
a realistic example. Section 10 draws conclusions.

2. A continuous time non-linear model

Most physical systems evolve in continuous time and are
hence described by ordinary differential equations. A stochastic
version of such equations takes the following conceptual form:

dx

dt
¼ f cðxÞþgcðxÞ

dx
dt

ð1Þ
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dz

dt
¼ hcðxÞþ

dm
dt

ð2Þ

where xARn is the state vector and dz=dtARm is the measured
output vector. In (1) and (2), dx=dt, dm=dt represent independent
continuous time ‘‘white noise’’ processes of intensity Q c and Rc

respectively. An important observation is that continuous time
white noise does not exist in any meaningful sense. (For example,
if one calculates the auto-covariance of such a process, then it
takes the form Q cdðtÞ where dð�Þ is the dirac delta function.) To
overcome this difficulty, it is often more insightful to use spectral
density description for the noise. Spectral density is the Fourier
transform of the autocorrelation i.e.

Spectral density of
dx
dt

� �
¼

Z 1
�1

Q cdðtÞe
�jxt dt¼Q c ð3Þ

Thus Q c is the spectral density of the process fdx=dtg. White
noise has constraint spectral density over an infinite bandwidth. This
observation allows one to supplement the notion of ‘‘white noise’’ by
the notion of ‘‘broad band’’ noise which has constant spectrum over a
wide (but not infinite) bandwidth. Indeed, it turns out that ‘‘white-
ness’’ of the process and measurement noise is largely irrelevant to
the operation of an optimal filter. What is actually needed is that the
spectrum be substantially constant in key regions. This issue is dis-
cussed in detail in Goodwin, Agüero, Salgado, and Yuz (2009). These
ideas expose a difficulty with the common practice of using variances
to describe noise in the discrete time case. For example, say that the
noise is broadband (but non-white) having spectral density Q cover-
ing a bandwidth of W, then the associated variance V is equal to the
area under the spectrum, i.e. V¼WQ . If one uses spectral density to
describe the noise, then no difficulties will be encountered since the
noise intensity has been correctly captured. However, say that the
Nyquist frequency, 1=ð2DÞ, is greater than the noise bandwidth. Then,
if one uses variance to describe the associated filter, then the variance
must be artificially scaled to V ¼V=WD to match the spectral
densities. If this is not done then the associated filter will perform
badly due to underestimation of the noise intensity.

A related problem is that variance does not indicate the
difficulty of an estimation problem. For example, consider the
case of very fast sampling. Then 1=D will be large. In this case, a
small noise intensity i.e. small spectral density could be asso-
ciated with a large noise variance. Yet, most of this noise power
will lie at frequencies above the bandwidth of the system.
Intuitively this part of the noise will not effect the filter perfor-
mance. Again, it is only the spectral density in relevant parts of
the spectrum that effects filter performance.

The above difficulties are overcome if one works with spectral
density rather than variance. Moreover, this aligns the continuous
and discrete cases, since spectral density (or equivalently incre-
mental variance) is exclusively used in the continuous case.

In view of the above discussion, Eqs. (1) and (2) are more
appropriately expressed in incremental form as:

dx¼ f cðxÞ dtþgcðxÞ dx ð4Þ

dz¼ hcðxÞ dtþdm ð5Þ

where the processes x and m correspond to Brownian motion
process having incremental covariance Q c dt and Rc dt respec-
tively. Also, as discussed above, Q c and Rc can equivalently be
thought of as spectral densities for dx=dt and dm=dt respectively.

The linear equivalents of Eqs. (4) and (5) are

dx¼Acx dtþdx ð6Þ

dz¼ Ccx dtþdm ð7Þ

xARn, zARm, Ac ARn�n, Cc ARm�n, dxARn and dmARm are
the state, measured output, system matrices, process noise and

measurement noise respectively. The initial state satisfies Efx0g ¼

x̂0 and Efðx0�x̂0Þ
T
ðx0�x̂0Þg ¼ P̂0. In the linear case, x and m are

assumed to be stationary vector Wiener processes with incremental
covariance Q c dt and Rc dt respectively. The matrices Q c and P0 are
assumed to be symmetric and positive semidefinite, and Rc is
assumed to be symmetric and positive definite.

3. Choice of sampling strategy

Consider first the case of regular sampling with fixed period D.
(This is sometimes called Riemann sampling (Ȧström &
Bernhardsson, 2002). Here the focus is on the independent time
variable).

In Section 2, dz=dt was defined as the continuous time output
(see Eqs. (2), (5) and (7)). The next step is to develop the form of
the model when samples are taken. However, this begs the
question, ‘‘Samples of what?’’. Two possible options are explored
below for the sampled output.

3.1. Direct sampling of dz=dt

At first glance, it seems plausible that one could directly
sample the continuous process dz=dt. However, this choice is
actually an infeasible option since the samples of the associated
noise, dm=dt, would have infinite variance!

3.2. Sampling after passing through an anti-aliasing filter

An appropriate remedy to the difficulty described in Section 3.1
is to pass dz=dt through an anti-aliasing filter prior to sampling. A
common choice for such a filter is to simply average dz=dt over the
sample period. Actually, some form of averaging is inherent in all
low pass filters that are typically used as anti-aliasing filters. In the
case of averaging, the sampled output satisfies:

yk ¼
1

D

Z ðkþ1ÞD

kD

dz

dt
ð8Þ

yk ¼
1

D
fzððkþ1ÞDÞ�zðkDÞg ð9Þ

To obtain a notation for the sampled data case which resembles the
continuous case, the (discrete) increment in z is defined via

dzþ ¼ zððkþ1ÞDÞ�zðkDÞ ð10Þ

where the superscript ‘þ ’ denotes ‘‘next’’ sampled value. In this case,
Eq. (9) can be rewritten as

yk ¼
1

D
dzþ ð11Þ

4. Event based sampling

Next consider the case of event based sampling. (This is some-
times called Lebesgue sampling (Ȧström & Bernhardsson, 2002).
Here the focus is on the dependent variable).

Let fqijg be a set of quantization levels for the jth output. These
quantization levels could, for example, be evenly spaced so that

qiþ1,j�qi,j ¼ LjAR for j¼ 1, . . . ,n ð12Þ

In event based sampling, the measured output is transmitted
only when a quantization level has been crossed. Moreover,
provided no bits are lost and provided a starting signal level is
known, then only 1 bit/sample needs to be sent to indicate
that the signal has moved to the next interval above (þ1) or the
next interval below (�1). The difference between Riemann and
Lebesgue sampling is illustrated in Fig. 1.
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