
Accepted Manuscript

Facile and fast synthesis of graphene oxide nanosheets via bath ultrasonic irradiation

A. Esmaeili, M.H. Entezari

PII:	S0021-9797(14)00474-3
DOI:	http://dx.doi.org/10.1016/j.jcis.2014.06.055
Reference:	YJCIS 19678
To appear in:	Journal of Colloid and Interface Science
Received Date:	15 March 2014
Accepted Date:	24 June 2014

Please cite this article as: A. Esmaeili, M.H. Entezari, Facile and fast synthesis of graphene oxide nanosheets via bath ultrasonic irradiation, *Journal of Colloid and Interface Science* (2014), doi: http://dx.doi.org/10.1016/j.jcis. 2014.06.055

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Facile and fast synthesis of graphene oxide nanosheets via bath ultrasonic irradiation

A. Esmaeili^a, M.H. Entezari^{a,b*}

^aSonochemical Research Center, Department of Chemistry, Ferdowsi University of Mashhad,

91775, Mashhad, Iran.

^bEnvironmental Chemistry Research Center, Department of Chemistry, Ferdowsi University

of Mashhad, 91775, Mashhad, Iran

Abstract

For the first time, this work reports a facile sonochemical route in the synthesis of graphene oxide nanosheets (GO) via oxidation of graphite (G). The synthesis of GO was carried out in a fast way under ultrasonic bath irradiation (GO-U). In comparison, the synthesis of GO via classical method (GO-C) was done under the same conditions as ultrasonic method. The products were completely different and the oxidation did not happen the same as way as ultrasonic method. Furthermore, GO was synthesized based on classical approach that most commonly used (GO-C^{*}), not under the same conditions as ultrasonic method. The GO sheets were characterized using UV–vis, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), thermal gravimetry (TG), and Raman spectroscopy techniques. The XRD confirms that the spaces between GO-U and GO-C^{*}

* Corresponding author, e-mail: moh_entezari@yahoo.com, Fax: 0098-511-8795457 Download English Version:

https://daneshyari.com/en/article/6997768

Download Persian Version:

https://daneshyari.com/article/6997768

Daneshyari.com