Control Engineering Practice 43 (2015) 1-11

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Control
Engineering
Practice

Experimental evaluation of an active fault-tolerant control method

M. Schuh*, M. Zgorzelski, J. Lunze

2 Institute of Automation and Computer Control, Ruhr-Universitit Bochum, Germany

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:

Received 21 July 2014
Accepted 3 June 2015
Available online 1 July 2015

Keywords:

Fault tolerance
Discrete-event systems
I/O automata
Diagnosis

Control design

A method for the active fault-tolerant control of systems modeled by deterministic input/output (I/O)
automata is presented and evaluated experimentally. In the fault-free case, a given controller moves the
system into a specified final state. The aim of the paper is to construct a framework which guarantees
that the final state is reached again after the occurrence of a fault. In this paper, two existing methods,
one for the fault diagnosis and one for the reconfiguration of I/O automata, are combined in order to
obtain an active and completely autonomous FTC framework. It is shown how the developed method can
be applied to a handling system and that it indeed makes the faulty system again fulfill its given task.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with active fault-tolerant control (FTC) of
discrete event systems modeled by deterministic input/output (I/
O) automata. As long as no fault is present, the plant P is
controlled by the nominal controller C such that a given specifica-
tion S, for example the achievement of a final state, is fulfilled
(Fig. 1). When a fault occurs, the behavior of the plant is affected
such that the nominal controller cannot steer the plant according
to the specification any longer. The aim of active FTC is to modify
the controller C such that the faulty plant again adheres to the
specification. After the occurrence of a fault, two main steps have
to be performed autonomously by the active FTC method:

1. Fault detection and identification.
2. Reconfiguration of the controller.

To accomplish these steps, an active FTC loop as shown in Fig. 1
is considered in this paper. The active FTC loop consists of two
layers:

® an execution layer, where the plant 7 and the controller € form
a classical feedback control loop,

® 3 supervision layer containing the diagnostic unit D and the
reconfiguration unit R.

In previous publications, the two steps of diagnosis and
reconfiguration have been considered independently. In Schmidt

* Corresponding author. Fax: +49 2343214101.
E-mail addresses: melanieschuh@atp.rub.de (M. Schuh),
zgorzelski@atp.rub.de (M. Zgorzelski), lunze@atp.rub.de (J. Lunze).

http://dx.doi.org/10.1016/j.conengprac.2015.06.001
0967-0661/© 2015 Elsevier Ltd. All rights reserved.

and Lunze (2013a), a method for the active diagnosis of determi-
nistic /O automata has been presented (cf. right part of Fig. 1),
whereas Nke and Lunze (2011b) deals with the online reconfigura-
tion for this system class (cf. left part of Fig. 1). Even though both
methods consider the same system class, three main steps have to
be undertaken in order to combine them to an active and
completely autonomous FTC framework:

1. The diagnostic unit D has to be extended such as to provide
exactly the information that the reconfiguration unit R
requires.

2. Both existing methods have to be modified as some previously
made assumptions (e.g. on the instantaneous identification of
the fault) are no longer valid.

3. A component managing the switching among inputs from the
controller, the diagnostic unit and the reconfiguration unit has
to be introduced.

Literature review: There are several approaches for the FTC of
discrete event systems, most of which use standard automata and
the Supervisory Control Theory (SCT) and fall into three
categories:

1. Robust or passive fault-tolerant controllers.
2. Switching controllers.
3. Controllers with checkpoint states.

To the best of our knowledge, no other approach for the fault-
tolerant control of discrete event systems modeled by I/O auto-
mata as considered in this paper exists. This system class is
especially suited for modeling dynamic systems in which the
inputs from a controller and the outputs of the plant form an
explicit causality relation. While the supervisors resulting from


www.sciencedirect.com/science/journal/09670661
www.elsevier.com/locate/conengprac
http://dx.doi.org/10.1016/j.conengprac.2015.06.001
http://dx.doi.org/10.1016/j.conengprac.2015.06.001
http://dx.doi.org/10.1016/j.conengprac.2015.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2015.06.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2015.06.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2015.06.001&domain=pdf
mailto:melanieschuh@atp.rub.de
mailto:zgorzelski@atp.rub.de
mailto:lunze@atp.rub.de
http://dx.doi.org/10.1016/j.conengprac.2015.06.001

2 M. Schuh et al. / Control Engineering Practice 43 (2015) 1-11

Supervision layer Ior 2Zp, ke
& © u
Reconfiguration Diagnostic
unit R unit D
(s i We Up ) Wp
— Controller C » Plant? —

Execution layer

Fig. 1. Active FTC loop.

SCT are designed such as to prevent the system from executing
forbidden motions, the control aim in this paper is to explicitly
steer the system into a desired final state.

In the first category of literature mentioned above, a single
controller is designed which guarantees the fulfillment of the
nominal specification (Park & Lim, 1999; Saboori & Hashtrudi Zad,
2006) or a degraded specification (Wen, Kumar, Huang, & Liu,
2008; Wittmann, Richter, & Moor, 2012) even when a fault
occurred. Therefore, no explicit diagnostic result is necessary. In
contrast to this, the method presented in this paper is an active
FTC method for which the present fault has to be identified.

In the second category, a bank of controllers corresponding to
different fault cases (Darabi, Jafari, & Buczak, 2003; Shu & Lin,
2014) or different system states at the time the fault occurs (Paoli
& Sartini, 2011) is designed offline. Then, once a fault is identified,
the respective controller is connected to the plant. On the contrary,
in this paper only one nominal controller is designed, which is
adapted online to the actual fault. Therefore, there is no need to
precompute and store a controller for every possible fault.

In the third category, certain restart states within the controller
are selected, to which the system is returned after a fault occurred
and from which the process can be restarted afterwards
(Andersson, Lennartson, & Fabian, 2009). It is assumed that
methods for the fault diagnosis and the physical transfer of the
system into the restart state are given. In this paper, no explicit
restart states are considered, but rather the system is always
returned to a state in its nominal state sequence.

In summary the FTC method in this paper fundamentally
differs from existing methods, because a different system class
(I/O automata instead of standard automata) and control aim
(reaching final state instead of preventing forbidden behavior) is
considered and hence a completely different approach is necessary
to solve the FTC problem. A preliminary version of this paper has
been published as Schmidt and Lunze (2014). This work is
extended here to include a discussion of the practical relevance
and applicability of the presented method by evaluating an
experiment on a handling system.

Main contribution: The main contributions of the paper consist
of the validation of the active FTC framework presented in Schmidt
and Lunze (2014), where the methods of active fault diagnosis
(Schmidt & Lunze, 2013a) and online reconfiguration (Nke &
Lunze, 2011b) are combined, through its application on an experi-
mental setup. It is shown that the experimental evaluation
confirms the theoretical results of the above-mentioned work.

Organization of the paper: The FTC problem to be solved is
presented in Section 2, where the system model is introduced, the
FTC problem is formalized and the methods to be combined
including necessary modifications are discussed. Section 3 con-
tains the main theoretical result of the paper and describes the
proposed FTC framework in detail. The setup for the experimental

evaluation of the developed method is described in Section 4.
Section 5 presents the design of the fault-tolerant controller for
the considered handling system, while in Section 6 the results of
the experimental evaluation are discussed.

2. Problem setup
2.1. Deterministic I/O automata

The plant P under consideration is modeled by a set
{Ar : f e F U {0}} of deterministic I/O automata

.Af :(Zf,v, W, Gf,Hf,Zfo) @)
with

® Z; - state set,

® ) — set of input symbols (e.g. “turn deflector”, “open valve”),
® )y — set of output symbols (e.g. “rising edge at limit switch”),
® Gy : Zy x V— Zf — state transition function,

® Hf: Z; x V—W - output function,

® 7z - initial state,

where F represents the set of all fault candidates. For f e F, the
automaton Ay models the behavior of the system when the fault f
is present, whereas the automaton .4, describes the behavior of
the fault-free case. It is assumed that all possible faults are known
and all models are exact. Only persistent faults are considered,
such that the models As(f € F) do not change over time.

The state transition function

Gr(z(k), v(k)) = z(k+1)=:2'(k) 2)

maps the current state z(k) and the input v(k) of the system to the
next state z'(k) = z(k+ 1), while the output function

Hy(z(k), v(k)) = w(k) 3

of the system yields the corresponding output w(k). Faults are
assumed to change the state transition function Gfand the output
function Hy compared to the faultless system Aq, but neither its
input set V nor its output set W. The transition from the model A4,
of the faultless system to any model As(f € F) of the faulty system
(e.g. the occurrence of a fault) is not modeled explicitly in this
framework.

The state transition function G; and the output function
Hy can be combined to the behavioral relation L;: Zf x Wx
Zf x V—{0,1}, where

1 if Gz, v)=2Z AHf(z,v)=w

Le(Z',w,z,v)= .
1 ) {0 otherwise.

For deterministic I/O automata, the behavioral relation Ly is
equivalent to a description using the state transition function Gy
and the output function Hy.

The active input function

Var(Z,2)={veV;: G(z,v) =2} 4)

of an automaton Ay computes all inputs v leading from state z to
state z/, while the active output function

War(Z',2) = (W e Wy : Hi(z,V) =W,V e Vy(Z, 2)} (5)

computes the corresponding outputs w.

A deterministic I/O automaton also can be modeled as a graph,
where the nodes of the graph represent the states of the
automaton and the edges of the graph labeled with the corre-
sponding input/output pairs represent the transitions of the
automaton. Due to this fact, some basic notions from graph theory
can also be applied to I/O automata. A state ze Z is called
reachable from the initial state zp, if there exists a path in the



Download English Version:

https://daneshyari.com/en/article/699799

Download Persian Version:

https://daneshyari.com/article/699799

Daneshyari.com


https://daneshyari.com/en/article/699799
https://daneshyari.com/article/699799
https://daneshyari.com

