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a b s t r a c t

In this work the authors address the problem of robustness of the classic PI controller implemented in a
Hydraulic Servo-Actuator (HSA), by presenting a strategy based on the definition of a linear model of the
system and the identification of its parameters for different working points. The variation of these
parameters is considered as a measure of parametric uncertainty of the linear model. These uncertainties
along with the definition of a nominal plant are used to analyze the robustness of the system im-
plementing the Small Gain Theorem. Theoretical and experimental results show that a PI controller can
provide robustness to the HSA.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of hydraulic systems are highly nonlinear due to
the physical properties present in the system such as fluid com-
pressibility, pressure losses, transient and turbulent flow condi-
tions and non-linear friction characteristics in the hydraulic
actuator.

These nonlinear characteristics demand the development of
advanced control strategies when high performance response is
required (Bobrow & Lum, 1995; Chen, Renn, & Su, 2005; Hwang,
1996; Kim & Tsao, 2000; Mohanty & Yao, 2011; Zhao & Virvalo,
1995; Zulfatman & Rahmat, 2009). Even though the nonlinear
characteristics of the system cannot be neglected, attempts are
also found in the literature to develop control strategies based on
linear models of the HSA (Karpenko & Sepehri, 2005; Kim, 1997;
Kim & Tsao, 2000; La Hera et al., 2008; Laval, 1996; Niksefat &
Sepehri, 2001; Rahmat, Rozali, Wahab, Zulfatman, & Kamaruza-
man, 2010).

Depending on the consideration taken, the simplified linear
models have the general form of a third (Jelali & Kroll, 2002) or
fourth order (Watton, 1989) type-I system. Nevertheless, in both
models it can be distinguished two parts: one associated to the
control input and the other associated to the effect of external

forces. In general, for the design of the controller the latter one is
discarded and only the first part is considered (Sepehri, Corbet, &
Lawrence, 1995).

In this work, it is demonstrated that the later assumption leads
to non-zero steady state error with classic P-controller, and that it
is necessary to appeal to a PI-controller. However, it is con-
troversial to use a PI controller with a type-I system, since the
open loop system will have two poles at the origin and thus re-
ducing the stability of the closed loop.

In this work the robustness of a HSA with a classic PI controller
is assessed.

The approach presented in this work implements the linearized
model of the system presented in Jelali and Kroll (2002), whose
parameters are experimentally identified for different working
points of the system (i.e. different positions and external load
conditions). The variability of these parameters is considered as a
measure of parametric uncertainties present in the linear model
and is used to provide boundaries that will define the robustness
of the system in terms of its stability and insensibility to external
perturbations using the Small Gain theorem.

The main contributions of this work are the following:

� P-controller cannot provide zero steady state error, and it can
only be achieved with a PI-controller.

� Classical PI controller can provide robustness to the HSA.
� Classical PD and PID controllers may lead to instability issues.

The rest of this work is organized as follows. Firstly, the line-
arized model of the HSA is derived and analyzed. Then, the ex-
perimental identification procedure of the system is completely
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detailed and 33 sets of parameters and their corresponding
transfer functions are found. From the experimental identification
a nominal plant is defined and some considerations regarding the
stability and steady state error with classical P, PI, PD and PID
controllers are presented. Following this, the robustness of the
system is analyzed implementing the Small Gain Theorem. The
real HSA is submitted to several experiments in order to prove the
performance of the PI controller and finally, the conclusions and
discussions are stated.

2. Theoretical model of HSA

The complete model of a HSA derives from complex equations
that depend on many parameters that cannot be always accurately
obtained and the rigorousness of the model is lost. However,
considering that the dynamics of the system are governed by the
slower dynamics (i.e. the dynamics of the piston), some of the
dynamics derived from the internal components of the servo-valve
can be neglected (Jelali & Kroll, 2002; Watton, 1989). It is a com-
mon practice to simplify the system into the orifice equation for
the servo-valve, the pressure dynamics at the cylinder, and the
dynamic equation of motion.

In particular for the linearized model, the latter equations are
expressed in terms of the load pressure given by P P PL A Bα= − , and
it is considered that the flow through the orifices is in a steady
state, i.e. Q A yA p= ̇ and Q A yB pα= ̇.

Taking an operating point P x P P, ,v A B0 0 0 0= [ ], and assuming
dominance of the first order term from the Taylor series expan-
sion, the set of linearized equations are stated as follows.

Linearized pressure equation:
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Linearized orifice equation for the servo-valve:

Q K x K P , 3A x A v P A Aδ δ δ= + ( )

Q K x K P . 4B xB v PB Bδ δ δ= + ( )

Linearized pressure dynamics: Adopting that fluid flows into
chamber A and flows out of chamber B while the pistons's rod
extends with positive velocity (see Fig. 1), then
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Linearized equation of motion: In order to simplify the model, it
is considered that the friction is governed by the classic sta-
ticþviscous friction model given by F y F yf s σ( ) = + ̇, where Fs is the
static friction coefficient and s is the viscous friction coefficient.
Therefore, the linearized equation of motion is given by

A P P F F m y . 7p A B ext fδ αδ δ δ δ( − ) − − = ¨ ( )

Nomenclature

PL load pressure
P P,A B pressure at chambers A and B
Q Q,A B oil flow through control Port A and Port B
α ratio of the effective surfaces at both sides of the

piston
Ap effective surface of the piston
cvi discharge coefficient of the orifices
xv servo-valve's input signal and servo-valve's spool

position
KxA, KxB flow sensibility constant regarding the spool position
KP A, KP B flow sensibility constant regarding the pressure at the

cylinder chambers
VA0, VB0 initial volume at the chambers
m total mass. It consists of the piston mass, the mass of

hydraulic fluid in the cylinder chambers and the ex-
ternal load

Aβ and Bβ bulk modulus of the fluid at chambers A and B of the
cylinder

Fig. 1. Schematic diagram of the simplified SHA.
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