
Detection of control loop interactions and prioritization of control
loop maintenance

Anisur Rahman, M.A.A. Shoukat Choudhury �

Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh

a r t i c l e i n f o

Article history:

Received 6 October 2010

Accepted 4 March 2011
Available online 31 March 2011

Keywords:

Loop interaction

Canonical correlation

IAE

ISE

Loop ranking

a b s t r a c t

Chemical processes with multiloop control configurations have significant amount of control loop

interactions due to tight mass and heat integration. Change in set point and/or controller parameters of

one control loop may affect the variables of other loops. The presence of loop interactions in a process

plant can cause significant quality and production losses of the plant. It is challenging to measure the

degree of interaction between control loops and rank the loops according to the extent of interactions.

This paper presents two data driven techniques to quantify control loop interactions and rank the loops

according to their importance. In the first approach, a novel method based on canonical correlation

analysis has been developed to calculate interaction among the loops and then normalization is done

with respect to the maximum canonical correlation to determine the rank of the loops. In another

approach, two indices have been developed using integral of absolute or squared error criteria to

quantify loop interaction and determine rank of the loops. Both methods require step test data of the

plant. Simulation and experimental results show the validity and efficacy of the proposed methods.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The presence of loop interactions in a multiloop control
configuration can cause several undesirable effects in chemical
processes. Chemical processes may become unstable and show
oscillatory responses due to the presence of significant loop
interactions. Detection of the degree of interactions among the
loops and finding the most interacting loop is a challenging task,
because in a chemical process there are hundreds of automatic
control loops connected in a MIMO control configuration. In
recent times plant engineers or operators are overloaded and
each of them needs to look after a couple of hundred of control
loops. It is often difficult for them to start the maintenance work
of the loops because they do not know where to start or which
loops are more important than others from operational point of
view. Therefore, it is important to have some diagnostic measures
to rank the loops according to their relative importance. This can
be done in many possible ways such as ranking the loops
according to the standard deviation of the error signals, key
performance indicators, economic indicators, oscillation index
and interaction index. This paper presents two methods to rank
the loops according to their interaction index.

Over the past few decades, several researchers presented
different methods to determine the degree of loop interactions
and prioritize the loops according to their importance from the
interaction point of view. Bristol (1966) proposed a novel method
in 1966 to determine control loop interaction using relative gain
array (RGA) and recommended a method for best pairing of
manipulated and controlled variables using steady state informa-
tion of the process. Dynamic relative gain array is used in Witcher
and McAvoy (1977) for dynamic interaction analysis of a process.
Tung and Edgar (1981) proposed a method to determine dynamic
interaction using open loop response of the process. Gagnepain
and Seborg (1982) also used open loop response of the process
expressing each transfer function as a first order plus time delay
model. Shimizu and Matsubara (1985) calculated the loop inter-
action using singular perturbation technique. Hwang (1995) and
Zhu, Lee, and Edgar (1997) used steady state information of the
process to determine control loop interaction. Meeuse and
Huesman (2002) proposed a graphical method which determines
the loop interaction by considering the dynamic information of
the process. Lee and Edgar (2004) analyzed loop interaction using
sensitivity and complementary sensitivity functions. Vilanova
(2008) used dynamic information of the process to measure loop
interaction.

Since exact process models are almost never known, the model
based interaction detection methods find limited applications.
Data based interaction detection technique appeared in Rossi,
Tangirala, Shah, and Scali (2006), Farenzena and Trierweiler
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(2009), Farenzena, Trierweiler, and Shah (2009). These methods
require either step change or routine operating data of the
process. Rossi et al. (2006) used plant set point change data to
determine loop interaction. Farenzena and Trierweiler (2009)
presented a new tool to determine loop interaction using partial
correlation function and rank the loops according to their impor-
tance using the PageRank technique. Farenzena et al. (2009)
calculated loop interaction by using the variability information
of the controlled variables.

Simple statistical signal processing methods such as data
correlation and integration of the absolute or squared data is
used to find techniques for determination of control loop inter-
action. Different correlation methods such as partial correlation
and cross correlation have been used for interaction detection. An
auto-correlation value of 1 represents the data is correlated with
itself. The cross-correlation value close to one for two variables
indicates that they are highly correlated. Another statistical
technique called canonical correlation can be used to quantify
relation between multidimensional variables. On the other hand,
if a variable in one control loop is highly disturbed by change in
another control loop then that variable will have high value of
integral of absolute error (IAE) or integral of squared error (ISE).

This paper proposes two new methods that can determine
control loop interaction effectively and can also rank the loops
according to their importance. One method is based on canonical
correlation analysis and the other method is based on IAE or ISE.
Both methods are data-driven and do not require explicit identi-
fication of process models. Only closed loop step test data suffices
the calculation of interaction indices.

The paper is organized as follows. Section 2 describes about
canonical correlation analysis. Section 3 describes the analysis
using IAE or ISE. Application of the techniques to simulated and
experimental data are presented in Sections 4 and 5 respectively.
The paper ends with the concluding remarks in Section 6.

2. Interaction analysis using canonical correlation

2.1. Canonical correlation

Among the different correlation, canonical correlation analysis
(CCA) is a way of measuring the linear relationship between
two multidimensional variables (Hotelling, 1936; McKeon, 1964;
Morrison, 1967). A multidimensional variable is a matrix contain-
ing m observations and n columns (variables), where nZ2. For
example, if there are four variables such as y1, y2, y3 and y4 each
having 5000 data samples, then a multidimensional variable, y,
can be formed so that y has the dimension of 5000�4. The
canonical correlation finds two bases, one for each variable, that
are optimal with respect to correlations and, at the same time, it
finds the corresponding correlations. In other words, it finds the
two bases in which the correlation matrix between the variables
is diagonal and the correlations on the diagonal are maximized.
The dimensionality of these new bases is equal to or less than the
smallest dimensionality of the two variables. An important
property of canonical correlations is that they are invariant with
respect to affine transformations of the variables. This is the most
important difference between CCA and ordinary correlation
analysis (Weenink, 2003; Muller, 1982).

In canonical correlation analysis the correlations between
objects that are to be maximized are represented with two data
sets. Let these data sets be Ax and Ay, of dimensions m�n and
m� p, respectively. Sometimes the data in Ay and Ax (where they
are mean corrected) are called the dependent and independent
data, respectively. The maximum number of correlations that can
be found is then equal to the minimum of the column dimensions

n and p. Let the directions of optimal correlations for the Ax and
Ay data sets be given by the vectors x and y, respectively. When
the data are projected on these direction vectors, two new vectors
zx and zy is obtained and is defined as

zx ¼Axx ð1Þ

zy ¼Ayy ð2Þ

The variables zy and zx are called the scores or the canonical
variates. The correlation between the scores zy and zx is then
given by (Montgomery & Runger, 2003)

q¼
z0y � zxffiffiffiffiffiffiffiffiffiffiffiffiffi

z0y � zy
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

z0x � zx
p ð3Þ

Now the problem is to find the directions y and x that maximize
Eq. (3) above. It should be noted that q is not affected by a
rescaling of zy or zx, i.e., a multiplication of zy by the scalar a does
not change the value of r in Eq. (3). Since the choice of rescaling is
arbitrary, therefore Eq. (3) is maximized subject to the constraints

z0x � zx ¼ x0A0xAxx¼ x0Rxxx¼ 1 ð4Þ

z0y � zy ¼ y0A0yAyy¼ y0Ryyy¼ 1 ð5Þ

Here, Ryy ¼A0yAy and Rxx ¼ A0xAx, where the R’s are covariance
matrices. When Ryx is also substituted by A0yAx, the maximization
problem along with the two constraints above can be written in
Lagrangian form:

Lðqx,qy ,x,yÞ ¼ y0Ryxx�
rx

2
ðx0Rxxx�1Þ�

ry

2
ðy0Ryyy�1Þ ð6Þ

Eq. (6) can be solved by first taking derivatives with respect to y
and x:

@L

@x
¼Rxyy�rxRxxx¼ 0 ð7Þ

@L

@y
¼Ryxx�ryRyyy¼ 0 ð8Þ

Now subtracting x0 times the first equation from y0 times the
second gives

0¼ y0Ryxx�ryy0Ryyy�x0Rxyyþrxx0Rxxx¼ rxx0Rxxx�ryy0Ryyy

ð9Þ

Together with the constraints of Eqs. (4) and (5) it can be
concluded that qx ¼ qy ¼ q. When Rxx is invertible Eq. (7) can
be written as

x¼
R�1

xx Rxyy

r ð10Þ

Substitution in Eq. (8) gives

ðRyxR�1
xx Rxy�q2RyyÞy¼ 0 ð11Þ

In an analogous way the equation for the vectors x can also be
written as

ðRxyR�1
yy Ryx�q2RxxÞx¼ 0 ð12Þ

Because the matrices Rxy and Ryx are each other’s transpose the
canonical correlation analysis can be written as follows:

ðR0xyR�1
xx Rxy�q2RyyÞy¼ 0 ð13Þ

ðRxyR�1
yy R0xy�q2RxxÞx¼ 0 ð14Þ

Eqs. (13) and (14) are known as generalized eigenvalue–eigen-
vector problems. The solution of these equations gives the value
of canonical correlation.
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