Accepted Manuscript

Hydrothermal synthesis and Electrochemical performances of 1.7 V Ni-MoO₄.xH₂OllFeMoO₄ aqueous hybrid supercapacitor

Baskar Senthilkumar, Ramakrishnan Kalai Selvan

PII: S0021-9797(14)00214-8

DOI: http://dx.doi.org/10.1016/j.jcis.2014.04.010

Reference: YJCIS 19497

To appear in: Journal of Colloid and Interface Science

Received Date: 22 February 2014 Accepted Date: 3 April 2014

Please cite this article as: B. Senthilkumar, R.K. Selvan, Hydrothermal synthesis and Electrochemical performances of 1.7 V NiMoO₄.xH₂OllFeMoO₄ aqueous hybrid supercapacitor, *Journal of Colloid and Interface Science* (2014), doi: http://dx.doi.org/10.1016/j.jcis.2014.04.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Hydrothermal synthesis and Electrochemical performances of 1.7 V

NiMoO₄.xH₂O||FeMoO₄ aqueous hybrid supercapacitor

Baskar Senthilkumar and Ramakrishnan Kalai Selvan*

Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar

University, Coimbatore-641 046, India

Abstract

One-dimensional (1D) NiMoO₄.xH₂O nanorods and βFeMoO₄ microrods are

successfully synthesized by simple hydrothermal method without using any organic solvents.

X-ray diffraction (XRD) patterns reveal the single phase formation of nickel molybdate

(NiMoO₄,xH₂O) and pure monoclinic phase of βFeMoO₄. The growth of one dimensional

morphology of both the molybdate is identified from scanning and transmission electron

microscopic (SEM & TEM) images. The cyclic voltammogram envisage the

pseudocapacitance behaviour of NiMoO₄.xH₂O and βFeMoO₄ through the reversible redox

reactions of Ni³⁺/Ni²⁺ and Fe³⁺/Fe²⁺ ions. An asymmetric supercapacitor is fabricated using

NiMoO₄.xH₂O nanorods and βFeMoO₄ as a positive and negative electrode, respectively. The

βFeMoO₄||NiMoO₄.xH₂O asymmetric supercapacitor delivers a capacitance of 81 F g⁻¹ at a

current density of 1 mA cm⁻². The cell exhibits a high energy density of 29 W h kg⁻¹ and good

cycling stability even after 1000 cycles.

Keywords: Nickel molybdate, Iron molybdate, Asymmetric capacitor, Pseudocapacitance,

Energy Density

*Corresponding author: selvankram@buc.edu.in (R.K.Selvan)

1

Download English Version:

https://daneshyari.com/en/article/6998194

Download Persian Version:

 $\underline{https://daneshyari.com/article/6998194}$

Daneshyari.com