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a b s t r a c t

Linear Model Predictive Control (MPC) continues to be the technology of choice for constrained,

multivariable control applications in the process industry. Successful deployment of MPC requires

‘‘getting right’’ multiple aspects of the control problem. This includes the design of the underlying

regulatory controls, design of the MPC(s), test design for model identification, model development, and

dealing with nonlinearities. Approaches and techniques that are successfully applied in practice are

described, including the challenges involved in ensuring a successful MPC application. Academic

contributions are highlighted and suggestions provided for improving MPC.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) is a mature technology and has
become the standard approach for implementing constrained,
multivariable control in the process industries today. MPC provides
an integrated solution for controlling systems with interacting
variables, complex dynamics, and constraints. A key aspect of MPC
is its ability to deal with degrees of freedom that may arise when
there are more or fewer inputs (manipulated variables, MVs) than
outputs (controlled variables, CVs), or when zone limits for con-
trolled variables are used, which is the typical situation in practice.
Broadly defined, MPC refers to a control algorithm that explicitly
incorporates a process model, typically non-square, to predict the
future response of the controlled plant and take appropriate action
through optimization. While the model may be linear or nonlinear,
linear MPC is considered here, as it is used in the majority of
industrial applications in the refining and petrochemical industries
today (and increasingly, in other industries). For these applications,
the plant model is identified using data generated from a dedicated
plant test. Today, there are a number of technology vendors which
provide MPC solutions, including software to facilitate the develop-
ment of MPC applications and monitoring of the performance of
these applications over time. The last 10–15 years have seen
significant efforts by technology suppliers to improve the usability
of their MPC products.

While the ‘‘science’’ of MPC has advanced and the technology is
now easier to apply, there is still a significant ‘‘art’’ aspect to the
application of MPC that largely comes from experience. The success

of an MPC application depends on the multiple technical decisions
that are made in the course of an implementation. In addition, there
are both technical and organizational issues that are critical to
ensure that MPC benefits are sustained in the longer term once an
MPC is commissioned (Darby & Teeter, 2005). The success rate of
MPC across the industry is uneven. Some companies are consistently
successful in deploying MPC, whereas others are not. In the follow-
ing, the main emphasis concerns the technical aspects of MPC that
arise in the course of a project implementation.

MPC is positioned above the regulatory control level in a
cascade arrangement as shown in Fig. 1. The manipulated vari-
ables for the MPC are typically setpoints of underlying PID
controllers, executed in a distributed control system (DCS). The
MPC may also directly manipulate valve position signals rather
than PID setpoints. Being below the MPC level in the multi-level
plant hierarchy, the DCS executes a at a higher sampling rate than
the MPC, typically sub-second to multi-second sampling period,
compared to (typically) a 30 second to 2 minute execution period
for the MPC.

Some targets are local to the MPC. Other targets come from
planning and scheduling, which are communicated to the opera-
tor in an open-loop fashion. A subset of the targets may come
from a real-time optimizer, if present. Note that there it not
necessarily a one-to-one translation of decisions from upper level
functions to targets and limits in the MPC, and they will change
over time based on economics and priorities. Examples include
gasoline vs. diesel objectives (winter vs. summer) in a refinery
and the priority of feed stocks in an ethylene plant. In addition,
there are day-to-day logistical issues that impact the targeting of
an MPC, such as a late shipment or a product tank becoming full.

Critical to successful implementation of MPC is the configura-
tion of the DCS regulatory controls, which includes the following:
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PID loop pairings, use of cascades and/or ratios, and whether it is
more appropriate for the MPC to directly manipulate valve
positions. An existing regulatory control strategy should not be
simply taken as a given. The plant control design problem is one
of deciding on the best overall structure for the regulatory level
and MPC, given the control objectives, expected constraints,
qualitative knowledge (at least) of the expected disturbances,
and robustness considerations. These design decisions have a far
bigger impact on the success of an MPC project than the
performance of the MPC algorithm itself (Vogel & Downs, 2002).
The selection of the controlled variables for MPC is not one of
simply deciding which subset of available measurements should
be selected. It may well be that available measurements are
insufficient and additional sensors are needed. In addition, not all
variables that need to be controlled may be available on a
frequent-enough basis; therefore, the problem of inferring quali-
ties from secondary measurements arises. The above decisions are
by no means trivial and represent key aspects of the controller
synthesis problem that have attracted significant attention over
the past four decades (Buckley, 1964; Foss, 1973; Larsson &
Skogestad, 2000; Lee & Weekman, 1976; Morari, Arkun, &
Stephanopoulos, 1980; Weber & Brosilow, 1972).

Once the regulatory level configuration has been decided, the
remaining decisions relate to how to structure the MPC layer:
should one controller or multiple MPC controllers be used? For
each controller, there is the issue of deciding on the manipulated
variables, the controlled variables, and the feedforward variables.
Non-linearity is an issue that must also be addressed, if significant
in an application. Note that the techniques discussed here are
based on approaches that retain a linear(ized) dynamic model at
the core of the MPC algorithm.

The typical MPC project sequence is as follows:

Pretest and preliminary MPC design.
Plant testing.
Model and controller development.
Commissioning and training.

In the pretest phase of work, the key activity is one of
determining the base level regulatory controls for MPC, tuning
of these controls, and determining if current plant instrumenta-
tion is adequate. It is common to retune a significant number of
PID loops, with significant benefits often resulting from this step
alone. The tuning emphasis is on disturbance rejection, but
standard DCS options are used to also ensure satisfactory setpoint
response. An outcome of this phase is a list of issues that must be
resolved before plant testing can proceed. Typical problems that

are identified are valve issues (sizing and excessive valve stiction),
faulty instruments, and sensor location. The other task that begins
in this phase is one of learning the process and understanding the
operational challenges and constraints. In addition, a preliminary
design for the MPC is typically performed, i.e., selection of
controlled and manipulated variables, and number of MPCs.

In plant testing, the process is excited by changing expected
independent variables of the MPC to generate data for model
identification. Additional process knowledge and insight comes
from this phase of work. Testing requires moving all inputs that
may be manipulated variables for the MPC. Testing may be
performed manually or automatically. Also during this phase,
frequent lab measurements are collected, if an inferential model
of product qualities is required.

In the next phase of work, modeling of the plant is performed,
including any required inferential calculations and non-linear
compensators (usually static). It is here that the models are
analyzed for consistency, including, for example, insuring that
steady-state model gains are consistent with physical and process
knowledge. The final design for the controller(s) is completed and
simulations performed to test the model and tune the controller.

Commissioning involves observing and testing the perfor-
mance of the MPC controller on the plant. Tuning adjustments
and model changes are made as required to obtain a controller
that performs well for the typical disturbances and constraint sets
that will be encountered. Training of operations staff on the live
controller is begun in this phase.

In the following, a high level description of MPC is provided
without emphasis on the particular theoretical properties of the
MPC algorithm, of which there is already a substantial body of
work (Mayne, Rawlings, Rao, & Scokaert, 2000). This is followed
by a detailed discussion of the key tasks and decisions that are
made in the course of an MPC implementation. Current practice is
highlighted and guidelines are given. The impact and suitability of
MPC outside traditional industries is then considered. Finally,
academic contributions are highlighted and suggestions provided
for how MPC can be improved.

2. MPC overview

A simplified block diagram of the typical MPC is shown in
Fig. 2. Key functionalities of the components shown in the figure
are described below.

Target Selection: Target selection determines the best feasible,
steady-state operating point for controlled outputs and manipu-
lated inputs, ys

k,us
k, respectively, based on steady-state gains of the

model. It can be implemented on the basis of minimizing devia-
tions from desired steady-state ‘‘resting values’’ or as the result of
an economic-based steady-state optimization, typically either a
linear program (LP) or a quadratic program (QP).

Controller: The controller determines optimal, feasible future
inputs over a moving horizon to minimize predicted future
controlled errors of controlled outputs from targets determined

Fig. 1. Plant control hierarchy.

Fig. 2. Simplified MPC block diagram.
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