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a b s t r a c t

Modeling of electrically stimulated muscle is considered in this paper where a Hammerstein structure

is selected to represent the isometric response. Motivated by the slowly time-varying properties of the

muscle system, recursive identification of Hammerstein structures is investigated. A recursive

algorithm is then developed to address limitations in the approaches currently available. The linear

and nonlinear parameters are separated and estimated recursively in a parallel manner, with each

updating algorithm using the most up-to-date estimation produced by the other algorithm at each time

instant. Hence the procedure is termed the alternately recursive least square (ARLS) algorithm. When

compared with the leading approach in this application area, ARLS exhibits superior performance in

both numerical simulations and experimental tests with electrically stimulated muscle.

& 2012 Published by Elsevier Ltd.

1. Introduction

Modelling of electrically stimulated muscle has been a widely
investigated area and plays an important role in the analysis of
motor control and the design of motor system neuroprostheses.
Muscle representations are also necessary in the development
of increasingly effective rehabilitation systems for patients
(de Kroon, Ijzerman, Chae, Lankhorst, & Zilvold, 2005). There exist
a large number of models developed for different aspects of
muscle contraction under both isometric, e.g. Bernotas, Crago,
and Chizeck (1986) and non-isometric conditions, e.g. Durfee and
Palmer (1994), considering the modulation of the output force by
varying either the number of active muscle fibers, e.g. Chizeck,
Crago, and Kofman (1988) or the frequency of the activation, e.g.
Bai, Cai, Dudley-Javorosk, and Shields (2009) and Cai, Bai, and
Shields (2010). The most widely assumed structure used in
model-based control of electrically stimulated muscle is the
Hill-type model (Hill, 1938). This describes the output force as
the product of three independent experimentally measured
factors: the force–length property, the force–velocity property
and the nonlinear muscle activation dynamics under isometric
conditions respectively, termed simply activation dynamics (AD)
of the stimulation input. The first two account for passive elastic
and viscous properties of the muscle and comprise static func-
tions of the muscle length and velocity (Freeman et al., 2009a;
Jezernik, Wassink, & Keller, 2004; Lan, 2002; Schauer et al., 2005;

Riener & Fuhr, 1998). The activation dynamics capture the active
properties of the muscle, and are almost uniformly represented
by a Hammerstein structure.

This structure is a crucial component of the muscle model
since in most applications joint ranges and velocities are small so
that the isometric behavior of muscle dominates. The widespread
use of a Hammerstein structure to represent the activation
dynamics is due to correspondence with biophysics: the static
nonlinearity represents the isometric recruitment curve (IRC),
which is the static gain relation between stimulus activation level,
and steady-state output torque when the muscle is held at a fixed
length. The linear dynamics represents the muscle contraction
dynamics, which combines with the IRC to give the overall torque
generated.

There are many identification methods applicable to Hammer-
stein models and in general they can be classified into two
categories: iterative, for example, Narendra and Gallman (1966),
Zhu (2000) and Westwick and Kearney (2001), and Dempsey and
Westwick (2004) with application to stretch reflex electromyo-
gram, and non-iterative methods, for example, an equation-error
parameter estimation method in Chang and Luus (1971), an
optimal two-stage algorithm in Bai (1998), a blind approach in
Bai (2002) and decoupling methods in Bai (2004). However, after
reviewing the existing techniques, limitations were encountered
when identifying an input–output model of electrically stimu-
lated muscles with incomplete paralysis. These drawbacks
were associated with both the structure of the linear and non-
linear Hammerstein components, and the form of the excitation
inputs employed. Consequently Le, Markovsky, Freeman, and
Rogers (2010) developed two iterative algorithms suitable for
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the identification of electrically stimulated muscles in subjects
with incomplete paralysis, and their efficacy was demonstrated
through application to experimentally measured data.

The algorithms developed in Le et al. (2010) represent sig-
nificant progress in the identification of electrically stimulated
muscles, but the models were only verified over a short time
interval (20 s duration). However, when applied to stroke reha-
bilitation, stimulation must be applied during intensive, goal
orientated tasks in order to maximize improvement in motor
control (Schmidt & Lee, 1998). In clinical trials this translates to
sustained application of stimulation during each treatment ses-
sion between 30 min and 1 h duration (de Kroon et al., 2005). In
this case, slowly time-varying properties of the muscle system
arise due to fatigue, changing physiological conditions or spasti-
city (Graham, Thrasher, & Popovic, 2006). Motivated by this,
online, also termed recursive, identification will be considered
in this paper, in which the model parameters are updated once
new data is available. Only a few of the existing identification
methods for Hammerstein structures are recursive, and can be
divided into three categories.

The first category is the recently developed recursive subspace
identification method by Bako, Mercere, Lecoeuche, and Lovera
(2009), where the nonlinear function is first recursively estimated
by over-parameterizations and component-wise least squares
support vector machines (LS-SVM). This is followed by estimation
of the Markov parameters by recursive least squares and then a
propagator-based method is used to recursively estimate system
state-space model matrices from these parameters. This proce-
dure does not have sparsity due to the LS-SVM model, and the
resulting computational load makes it unsuitable for real-time
implementation.

The second category is stochastic approximation (Chen, 2004;
Greblicki, 2002) where a stochastic approximation algorithm with
expanding truncations is developed for recursive identification of
Hammerstein systems. Two major issues with this method are the
rather slow convergence rates, and the lack of information on
how to select the optional parameters in the algorithm.

The third category is recursive least squares (RLS) or extended
recursive least squares (ERLS). The RLS algorithm is a well known
method for recursive identification of linear-in-parameter models
and if the data is generated by correlated noise, the parameters
describing the model of the correlation can be estimated by ERLS.
Here, a typical way to use these two algorithms is to treat each of
the cross-product terms in the Hammerstein system equations as
an unknown parameter. This procedure, which results in an
increased number of unknowns, is usually referred to as the
over-parameterization method (Bai, 1998; Chang & Luus, 1971).
After this step, the RLS or ERLS method can be applied (Boutayeb
& Darouach, 1995; Boutayeb, Aubry, & Darouach, 1996; Zhao &
Chen, 2009).

The limitations of current algorithms are stated next and used
to justify some of the critical choices necessary for this work to
progress.

� The first two categories have only been applied in simulation
and the stochastic approximation has not the considered time-
varying linear dynamics. This, together with the drawbacks
described above, is the reason for not considering them further
for the application treated in this paper. The third category is
the most promising as it has already been applied to electri-
cally stimulated muscle in Chia, Chow, and Chizeck (1991) and
Ponikvar and Munih (2001).
� Most of the test signals used comprise random noise in order

to guarantee persistent excitation, even when applied to the
human muscle (Ponikvar & Munih, 2001), and use pseudoran-
dom binary sequences. However, this type of signal, which

excites the motor units abruptly, will cause patient discomfort
and may elicit an involuntary response, as reported in Baker,
McNeal, Benton, Bowman, and Waters (1993). In Chia et al.
(1991) a test consisting of 25 pulses is used, each of which is of
1 s duration in the form of a noisy triangular wave. This test
meets our requirements but is too short to exhibit time-
varying properties.
� The most relevant previous work is Chia et al. (1991) where the

system considered had linear constraints and RLS was developed
for constrained systems. However, the results given do not
establish that the constraints are achieved. For example, even
when considering the prediction error, the posteriori estimated
output without constraints is superior to the one with con-
straints. Thus, the idea of adding constraints to RLS, leading to
increased computational load, still merits consideration.

Overall, RLS has the greatest potential for application to
electrically stimulated muscle, but the problem of consistent
estimation must be resolved (Chen, 2004; Chia et al., 1991). The
deficiency of RLS is illustrated in Section 3, where noise and
excitation inputs that correspond with those encountered in the
rehabilitation application domain are employed, and confirm its
unsatisfactory performance. This motivates development of an
alternative recursive algorithm in Section 2.3, as well as the
design of a long-period test signal which is persistently exciting
and also gradually recruits the motor units, and hence is suitable
for application to patients. This problem is addressed in Section 4.

2. Problem statement and solution methods

2.1. Problem statement

Consider the discrete-time SISO Hammerstein model shown in
Fig. 1. The linear block is represented by ARX model:

yðkÞ ¼
BðqÞ

AðqÞ
wðkÞþ

1

AðqÞ
vðkÞ ð1Þ

where

BðqÞ ¼ b0q�dþb1q�ðdþ1Þ þ � � � þbnq�ðnþdÞ and

AðqÞ ¼ 1þa1q�1þ � � � þalq
�l ð2Þ

q�1 is the delay operator and n, l and d are the number of zeros,
poles and the time delay order, respectively. The parameters n, l

and d are assumed to be known. The nonlinearity is represented
by a sum of the known nonlinear functions f1,f2, . . . ,fm and a bias:

wðkÞ ¼ f ðuðkÞÞ ¼ b0þ
Xm

i ¼ 1

bifiðuðkÞÞ ð3Þ

The identification problem considered is:

Given N consecutive input–output data measurements fuðkÞ,yðkÞg
estimate recursively the linear parameters ½a1, . . . ,al,b0, . . . ,bn�

in (2) and the nonlinear parameters ½b0, . . . ,bm� in (3).
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Fig. 1. Hammerstein system.
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