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Nonlinear model predictive control (NMPC) is a control strategy based on finding an optimal control
trajectory that minimizes a given objective function. The optimization is recalculated at each control
cycle and only the first control values are actually used. The dynamics of the system can be nonlinear and
there can be constraints on states and controls. A new toolkit called VIATOC has been developed that can
be used to automatically generate the code needed to implement NMPC. The generated code is self-
contained ANSI C and the compiled program has a small footprint. In VIATOC, the gradient projection
method is used to solve the nonlinear optimization problem. Barzilai-Borwein type step length selection
for the gradient method has also been implemented. The performance of the controllers generated with
the toolkit is compared with those solved with the ACADO toolkit and HQP. The performance of the
optimization is compared with two different test cases with different numbers of controls and states.
The first one is based on a model of a pendulum hanging freely on a movable platform. The second one is
a more complex model of a chain of three masses connected by springs. Seven different prediction
horizons between 10 and 100 steps are used. When the time to achieve a near optimum solution is
measured, VIATOC is in most cases the fastest one when the length of the prediction horizon is shorter
than 70 steps.
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1. Introduction NMPCs have traditionally been used in the process industry to

optimize the operation point of the process (Nagy, Mahn, Franke,

Nonlinear model predictive control (NMPC) is a feedback
control strategy based on nonlinear optimization. The optimiza-
tion is usually recalculated at each time step for a new control.
A prerequisite for NMPC is that there is a dynamic model of the
system that is being controlled. As the name implies, the model
consists of nonlinear differential equations. States and controls can
have constraints that need to be taken into account. The optimiza-
tion is based on minimizing an objective function that usually has
quadratic cost terms for the differences in states and controls
compared to a reference trajectory. An advantage of an NMPC is
that it can predict the future state of the system and therefore find
a near-optimal control path. One disadvantage is the required
amount of computational power, which restricts the complexity of
systems that can be controlled, the maximum control frequency,
and the length of prediction horizons. Therefore, the efficiency of
the optimization is usually of the utmost importance.
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& Allgower, 2007), while low-level unit controllers are used
for setpoint tracking. Lately, NMPCs have also been utilized in
path tracking for autonomous agricultural machines (Backman,
Oksanen, & Visala, 2012), flood regulation of a river (Barjas Blanco
et al., 2010), and overhead crane control (Schindele & Aschemann,
2011). Some of the applications have had relatively fast dynamics
and require efficient algorithms for real-time operation.

In the general case, the optimization required by the NMPC
cannot be solved analytically. Therefore numerical methods are
used. There are two types of numerical iterative methods avail-
able: indirect and direct methods. With the indirect method, a root
of the necessary optimization condition is searched. With the
direct method, a sequence of control trajectories is constructed
such that the objective function is minimized and typically the
value of the objective function decreases at every step. There are
advantages in both strategies, but the direct method is more
popular because it is numerically more robust and easier to
initialize (Betts, 2001).

Most toolkits that the authors are aware of utilize the so-called
sequential quadratic programming (SQP) strategy. With the SQP
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algorithm, the fundamental idea is to linearize the problem, solve
it as a quadratic programming (QP) problem, and repeat the
process until sufficient convergence is achieved. QP sub-pro-
blems can be solved iteratively using the Newton method. When
the Lagrangian function is used, only the equality constraints are
present. However, in NMPC usually there are also inequality
constraints. One solution is to use an Active Set strategy where
the active set of constraints changes. The interior point method is
another way of solving the QP sub-problem of the SQP. However,
the interior point method can also be used directly to solve the
nonlinear optimization problem. IPOPT is a popular tool that is
designed for solving optimization problems using the interior
point method.

HQP (Huge Quadratic Programming) is a tool that uses an SQP
algorithm to solve nonlinearly constrained optimization problems.
Convex quadratic sub-problems are solved using a polynomial
time interior-point method. The Lagrangian function of the pro-
blem is approximated quadratically by a sparse or dense Hessian
matrix, which is updated numerically. The Jacobian matrices of the
system equations and the cost function can be numerically
approximated, or the user can provide exact Jacobians. For the
continuous time optimization problem formulation, the Omuses
front-end can be used (Franke & Arnold, 2008).

Another toolkit using SQP is ACADO, an open source toolkit
designed for automatic control and dynamic optimization. The
ACADO Toolkit is based on four key properties: open source, user
friendliness, code extensibility, and self-contentedness (Houska,
Ferreau, & Diehl, 2011a). The toolkit is freely available and is
released under GNU LGPL. The user-friendliness and code exten-
sibility have been achieved by utilizing the object-oriented cap-
abilities of C++ and careful design of interfaces. External
packages can be used, but ACADO is basically designed to be
self-contained.

ACADO also has a code generation tool that is designed to
export optimized C code (Houska, Ferreau, & Diehl, 2011). First, the
user defines the NMPC problem using C+ + code. The toolkit then
exports a tailored Runge-Kutta method, required derivatives of the
dynamic model, discretization, and condensing routines. The auto-
generated code does not use any dynamic memory and is easily
used on different hardware and operating systems. ACADO sup-
ports different QP solvers, e.g., CVXGEN (Mattingley & Boyd, 2009),
qpOASES (Ferreau, 2012), and FORCES (Domahidi, 2012), which are
used to solve the underlying quadratic programming problem. The
ACADO code-generation tool is used in this study as the main
performance benchmark due to many similarities compared to the
newly developed toolkit.

CasADi is another open-source toolkit that is capable of sol-
ving optimization and optimal control problems. It supports dif-
ferent discretization methods, such as single and multiple shoot-
ing methods and collocation methods. However, currently the
code generation support for integrators is still under develop-
ment, and therefore CasADi was not used for performance com-
parison in this study.

GRAMPC is software designed for nonlinear model predictive
control (Kapernick & Graichen, 2014). It uses a projected gradient
method to solve the optimization. The step length in the direction
of the gradient is selected either using a polynomial approxima-
tion of the cost function or a line search of Barzilai and Borwein
(1988). Currently, GRAMPC only supports control constraints.

The objective of this research was to develop a lightweight
NMPC toolkit based on an efficient implementation of the gradient
projection method. In this paper, a new open source toolkit,
VIATOC, will be presented. VIATOC is developed for generating C
code from the user-defined NMPC problems, and it also contains
integrators and optimization algorithms required for actually
solving the optimal control trajectories. The methods and main

ideas used and performance results with a comparison to other
toolkits are detailed.

VIATOC has already been used for controlling a real hydraulic
forestry crane. The objective was to control the position of the tip
of the boom and simultaneously damp the undesired oscillations
of a tool attached to it. The dynamic model consisted of 12 states
and 4 controls, and the prediction horizon of 10 s was divided into
100 steps. The required 100 ms control frequency was achieved,
even though the dynamic model was relatively complex and the
prediction horizon was quite long. The results from the crane
control tests are discussed in more detail by Kalmari, Backman,
and Visala (2014).

The structure of this paper is the following. Section 2 presents
the control problem formulation that the toolkit solves. In this
section, the methods utilized to solve the problem are also
explained. The usage of VIATOC and the structure of the software
are presented in Section 3. Section 4 presents the test problem
and how the performance is compared against ACADO Code
Generation and HQP. Results of the comparisons are given and
discussed in Section 5. Some concluding remarks are made in
Section 6.

2. Numerical methods in VIATOC

The VIATOC toolkit is developed for solving NMPC problems
based on the following optimal control problem:
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The state vector of the system is x(t) and the system is
controlled with u(t). The dynamics of the system are defined using
a state-space model using the function f(x(t), u(t)). Currently, the
dynamics can consist of arithmetic operations, basic trigonometric,
and other common mathematical functions. The initial condition
of the system is given with Xq. In NMPC, this initial value is usually
the current measured or estimated state of the system.

The optimal solution minimizes the quadratic objective func-
tion of states and controls with the constraints taken into account.
Xref(t) and u(t) are the state and control reference values,
respectively. Q, R, and P are positive semidefinite weighting
matrices of the error in state trajectory, error in control trajectory,
and error in the final state values, respectively. Ui, Umax, Xmin, and
Xmax are constant upper and lower bounds for the controls and
states.

The process of solving the optimal control problem is divided
into two steps. In the first step, the state trajectory is integrated
and the dynamics are linearized using the initial control trajectory.
In the second step, the linearized optimization problem is solved.
The solution of the second step is then used as the new initial
solution and the steps are repeated as many times as the user
requests. This process is basically the same as in SQP methods,
where the original problem is solved iteratively as a series of QP
problems. However, in our implementation, only a fixed number of
iterations are done when solving the linearized problem in the
second step. Fixing the number of iterations makes the time
requirement for the optimization more predictable, which in the
case of NMPC can be a more important factor than the exact
optimality of the solution.
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