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a b s t r a c t

A system with an integrator is one which does not have a steady-state gain at zero frequency.
An example is a battery; when subjected to a constant charge or discharge current the voltage will
continuously increase or decrease until the cell reaches its maximum/minimum cut-off voltage and not
reach a steady-state value. Frequency response estimation techniques that minimises leakage errors lead
to significant errors at low frequencies of the response. This paper develops and presents a technique
whereby the low frequency errors are eliminated. The technique is applied over the frequencies of
interest, except DC frequency, and gives better results over windowing and a local polynomial frequency
response estimation method. As such, an accurate low frequency response and noise power spectrum
can now be obtained which in turn can be used for estimating accurate parametric models.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The topic of system identification deals primarily with the
derivation of dynamical models of systems from measured time
signals or data. Obtaining a parametric dynamic model from the
data generally requires assumptions regarding the model structure
and order. Alternatively, the frequency response function (FRF) is a
non-parametric estimate of a linear system's dynamics. The FRF
can then be used to estimate a parametric model and because it
reveals the main features of the dynamics it will also assist in the
parametric model order and structure selection (Schoukens,
Vandersteen, Barbe, & Pintelon, 2009).

If the input signal is periodic and the system under test is linear
and stable, an accurate estimate of the frequency response can be
obtained at all frequencies. If the input is aperiodic, an error
known as the leakage error is introduced when relating the input
and output spectra while using finite time records. The classical
approach to reduce leakage is to use a windowing function (e.g.
Hanning) with the input and output time records (Blackman &
Tukey, 1958) and furthermore the number of blocks for averaging
can be increased by introducing block overlapping (Barbe,
Pintelon, & Schoukens, 2010; Widanage, Douce, & Godfrey, 2009).

In more recent work, techniques such as the Local Polynomial
Method (LPM) (Pintelon, Schoukens, Vandersteen, & Barbe, 2010),

the Local Rational Method (LRM) (McKelvey & Guérin, 2012) and
TRansient Impulse Response Modelling Method (TRIMM) (Hägg &
Hjalmarsson, 2012; Hagg, Hjalmarsson, & Wahlberg, 2011) have
been developed. These make use of the mathematical structure of
the leakage error, for example LPM and LRM make use of the
leakage error smoothness and reduce the error by approximating
it over a narrow frequency window with a polynomial in the case
of LPM or rational function in LRM.

Systems that consist of an integrator have a well defined
frequency response at every frequency, except at DC frequency
(0 rad/s) at which the FRF tends to infinity. In its transfer function
this corresponds to having a pole at zero. If an input is applied that
has a non-zero mean value the DC frequency is perturbed and the
output will have a trend that increases or “drift”. In theory, due to
the infinite gain at DC frequency, the Fourier transform of a system
with an integrator does not exist.

In practice, however, an experiment is performed and data are
collected over a finite time period. The drift term in the measured
output signal, which more specifically is a ramp signal of finite
length, has a well defined Short Term Fourier Transform (STFT). The
spectrum of this ramp signal if ignored introduces an error that is
not due to leakage and the use of methods such as windowing or
the polynomial approximation method, which are suited for redu-
cing leakage effects, are unable to minimise the drift error, giving
biased estimates, particularly at the low frequencies.

A lithium ion battery is an example of a system with an
integrating effect. As an energy storage element its terminal
voltage gradually increases or decreases to the applied charge/
discharge current. Impedance estimates of a cell are a useful
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non-invasive measure for cell ageing, fault and state-of-charge
diagnostics (Offer, Yufit, Howey, Wu, & Brandon, 2012; Tröltzsch,
Kanoun, & Tränkler, 2006). The current and voltage are measured
whilst the cell is in open-loop, often in a laboratory or in a vehicle
by a Battery Management System (BMS) (Howey, Yufit, Mitcheson,
Offer, & Brandon, 2013). The current usually has no DC offset to
avoid perturbing the 0 frequency, if however, the 0 frequency is
excited the current and voltage are measured over a very short
time interval whereby any integrating effect is ignored and the
impedance or any estimated impedances below a certain fre-
quency (o1 Hz) are discarded (Howey et al., 2013).

The results of Howey et al. (2013) show good promise for on-
vehicle cell impedance estimation; which used windowing
for leakage error suppression and calculating the cross and auto-
power spectra for impedance estimation and the low frequency
estimates were discarded by evaluating a coherence function. In
contrast to their work, the solution strategy developed and described
in this paper uses LPM for leakage suppression and further modifica-
tions to the output spectrum which together can be used to improve
the low frequency impedance estimation, without discarding them,
when a cell is under a DC bias and by treating it as a system with an
integrator.

The framework within which the estimation technique is
developed and presented here assumes a continuous time system
in open-loop with measurement noise in the output (an output
error problem). The structure of the paper is organised as follows.
The following section, with the aid of a simulation example,
highlights the low frequency errors observed when estimating
the frequency response. Sections 3 and 4 describe how the low
frequency error can be significantly reduced and the power
spectrum of the disturbing noise be estimated. Section 5 shows
how the developed method improves the frequency response
when applied to a battery and Sections 6 and 7 analyses several
aspects of the developed technique followed by conclusions of the
method.

2. System and problem setting

A general continuous time system with an integrator in an
output-error framework (only the system output is corrupted with
noise) is considered in this paper and the system set-up within
which the solution is developed is shown in Fig. 1. The input (for
example a current signal) is assumed to be a computer generated
sequence of samples that passes through a zero-order hold (ZoH)
and is assumed to be noise free. The input can be an arbitrary
deterministic or random signal but persistently exciting over the
frequency of interest. The output from the system (for example a
voltage signal) is corrupted with a filtered white noise process and

is zero mean and stationary (see the following equation):

yðtÞ ¼ gðtÞnuðtÞþhðtÞneðtÞ ð1Þ
In Eq. (1) “n” denotes the convolution operator, u(t) is the
continuous input signal (after passing through the ZoH) and e(t)
is a zero mean Gaussian white noise process with variance σ2e,
uncorrelated with the input. Further, g(t) and h(t) are respectively
the system and noise filter impulse responses.

The system is perturbed and measured over a finite time length of
0rtrL seconds and the objective is to estimate the frequency
response of the continuous time system and the power spectrum of
the disturbing noise from the known input and output time sampled
data (sampled at a rate of fs Hz). An accurate estimate of the noise
variance at each frequency is important, as it can be used as a frequency
weighting in a subsequent parametric estimate of the system transfer
function (Schoukens, Rolain, Vandersteen, & Pintelon, 2011).

A simulation example is presented in the following subsection to
illustrate the level of error encountered when applying two existing
frequency response estimation methods, windowing and LPM.

2.1. A simulation example

Consider the following transfer function (G(s)), which is a linear
system consisting of an integrator:

GðsÞ ¼ 4sþ0:05
ð5sþ1Þs ð2Þ

The system is excited with a normally distributed random signal
with unit mean and a standard deviation of 2, uðnÞ �N ð1;22Þ. The
noise filter (H(s)) is a low pass Chebyshev Type I filter of order 10
and with an angular pass band frequency of 0:2π rad=s. A zero
mean normally distributed signal with a standard deviation of 0.5 is
filtered through H(s) and added to the system output as coloured
noise. With a sampling frequency of 1 Hz, N¼1000 input and
output samples are acquired for the frequency response estimation.

2.2. Classical estimation via windowing

The classical method of estimating a frequency response is to
segment the time data record into equal blocks by multiplying it with
a window, such as a Hanning window which also minimises leakage
errors, and compute the ratio of the cross-power spectral density and
the auto-power spectral density (Bendat & Piersol, 1993; Blackman &
Tukey, 1958; Schoukens, Rolain, & Pintelon, 2005). In order to have a
higher frequency resolution and access to low frequency content, the
data record on this occasion, is not segmented. Instead a Hanning
window is applied over the N sampled values and an estimate of the
frequency response is obtained based on one block. Denoting u(n) as
the input samples, the windowed input is uwðnÞ ¼ uðnÞ �wðnÞ, where
wðnÞ ¼ 1� cos ðð2πnf sÞ=NÞ is the Hanning window function. Simi-
larly, yw(n) is the windowed sampled output signal.

When using windowing methods the input and output Discrete
Fourier transform (DFT) can in general be related as

YwðkÞ � GðωkÞUwðkÞþVðkÞ ð3Þ
In Eq. (3) Yw(k) is the DFT of yw(n) at the kth harmonic number,
GðωkÞ is the frequency response evaluated at the discrete angular
frequency ωk92πkf s=N and V(k) is the noise term uncorrelated
with the input. The equation is an approximation, since window-
ing reduces but does not eliminate leakage errors. Due to the ZoH
effect, Uw(k) is the product of the DFT of the windowed input
(uw(n)) and the spectrum of a ZoH.1 From Eq. (3) an estimate for
the frequency response is ĜðωkÞ ¼ YwðkÞ=UwðkÞ. The magnitude in
dB and the phase of the estimated response along with the true
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Fig. 1. System set-up. Both input and output data are available for identification
and only the output is assumed to be corrupted with coloured noise. 1 ZoH spectrum at kth harmonic, ZðkÞ ¼ j sin ðπk=NÞ=ðπk=NÞje� jπk=N .
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