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a b s t r a c t

Model-based control design requires a careful specification of performance and robustness require-
ments. In typical norm-based control designs, performance and robustness requirements are specified in
a scalar optimization criterion, even for complex multivariable systems. This paper aims to develop a
novel approach for the formulation of this optimization criterion for multivariable motion systems that
exhibit spatio-temporal deformations. To achieve this, characteristics of the underlying system are
exploited to design multivariable weighting functions. In contrast to pre-existing approaches, which
typically lead to diagonal weighting functions, the proposed approach enables the design of non-
diagonal weighting functions. Extensive experimental results confirm that the proposed procedure can
significantly improve the performance of an industrial motion system compared to earlier approaches.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The design of a high-performance controller for a complex
multivariable system hinges on the specification of a suitable
optimization criterion. In model-based control, a scalar criterion is
typically adopted that should reflect the user-defined performance
requirements, as in Zhou, Doyle, and Glover (1996), McFarlane and
Glover (1990) and Skogestad and Postlethwaite (2005). These
requirements are defined in the optimization criterion by means
of weighting functions, see, e.g., Lanzon and Tsiotras (2005), Hu,
Bohn, and Wu (2000), Graham and de Callafon (2007) and
Lundström, Skogestad, and Wang (1991). Relevant examples of
model-based control include H2 and H1 control.

The key advantage of H1�optimization is that it is capable of
delivering robust controllers by explicitly taking model uncertainty
into account. In contrast, LQG and H2 designs have no guaranteed
robustness margins, as is shown in Doyle (1978). Besides the ability
of H1�optimization to design robust controllers, it allows for the
design of weighting functions using loop-shaping concepts, see, e.g.,
Doyle and Stein (1981) and McFarlane and Glover (1990). These
techniques are particularly suitable for motion control, where
controllers are traditionally being designed using manual loop-
shaping, see, e.g., van deWal, van Baars, Sperling, and Bosgra (2002).

Weighting function design for motion systems typically employs
diagonal weighting functions to specify performance requirements,
see, e.g., Steinbuch and Norg (1998), Schönhoff and Nordman (2002)
and van de Wal et al. (2002). The underlying assumption for this
approach is that the system is approximately diagonal. This assump-
tion is in general not valid for multivariable motion systems that
exhibit spatio-temporal deformations. For such systems, parasitic
dynamics are typically relevant in more than one channel of the
servo system. In fact, such dynamics have in general a specific
directional effect, making the control problem inherently multi-
variable. In such cases, non-diagonal weighting selection in the
performance channels of the H1�optimization problem might be
very effective to enhance the performance of multivariable motion
systems.

Although H1 control is promising for the design of controllers
for multivariable motion systems that exhibit spatio-temporal
dynamics, at present there is no procedure to adequately specify
the control goal in standard H1 control criteria. This paper aims to
improve performance of such systems by exploiting non-diagonal
weighting functions that address the directional effect of spatio-
temporal dynamics. To achieve this, the designed weighting
functions incorporate frequency-localized compensation of direc-
tionality in the system. The performance improvement obtained
with non-diagonal weighting functions is illustrated by means of
an experimental case study for an industrial high-performance
motion system. This paper is an extension of a previously pub-
lished conference paper (Boeren, van Herpen, Oomen, van de Wal,
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& Bosgra, 2013) and includes a complete derivation, analysis and
experimental results.

This paper is organized as follows. In Section 2, loop-shaping
for multivariable systems is revisited. In Section 3, a procedure is
proposed to determine transformation matrices that provide
frequency-localized compensation of the directionality in the system.
In Section 4, multivariable weighting functions are proposed to
specify performance requirements for motion systems. In Section 5,
extensive experimental results for an industrial motion system are
provided to evaluate the achievable performance enhancement of
the proposed weighting function design. Finally, conclusions are
provided in Section 6.

Notation: Let PðsÞARn�n denote a square real-rational transfer
function matrix, with s the Laplace operator. For ease of notation,
P(s) is also denoted P. Furthermore, let the singular values of a
matrix AACn�m be denoted by σiðAÞ, with the maximum (resp.
minimum) singular value denoted by σ ðAÞ (resp. σ ðAÞ). The
eigenvalues of a matrix AACn�m are denoted by λiðAÞ. A matrix
UACn�n is unitary if UHU ¼UUH ¼ I, where UH is the conjugate
transpose of U.

Remark: In order to clearly illustrate the concepts in this paper,
attention is restricted to square systems P(s). Extensions to non-
square systems are conceptually straightforward.

2. Problem definition

2.1. Loop-shaping

Closed-loop performance and robustness requirement can often be
translated in a desired loop transfer function. The goal of loop-shaping
is to attain this desired loop transfer function Ldes ¼ PC, with P being
the system and C being the controller, that prescribes the desired
gains of the system as a function of frequency. In particular, three
requirements for Ldes are commonly imposed, see, e.g., McFarlane
and Glover (1990, Chap. 6) and Skogestad and Postlethwaite (2005,
Chap. 9), These requirements are indicated in Fig. 1 by the black
triangles and the cross-over region f A ½f 1; f 2�, given by σ ðLdesðf 1ÞÞ ¼ 1
and σ ðLdesðf 2ÞÞ ¼ 1.

R1. Nominal stability: The maximum roll-off rate of jλiðLdesÞj, 8 i in
the cross-over region f A ½f 1; f 2� is �40 db/decade.

R2. A large open-loop gain needs to be attained for frequencies
below f1, i.e., σ ðLdesÞc1 8 f A ½0; f 1�.

R3. A small open-loop gain needs to be attained for frequencies
above f3, i.e., σ ðLdesÞ{1 8 f A ½f 3; f1�.

Requirement R1 ensures nominal closed-loop stability, while
R2–R3 reflect classical closed-loop performance and robustness
requirements. To illustrate the connection between R2–R3 and
closed-loop requirements, consider the desired sensitivity func-
tion Sdes ¼ IþLdesð Þ�1 and desired complementary sensitivity
function Tdes ¼ Ldes IþLdesð Þ�1. As shown in McFarlane and Glover
(1990), these expressions can be approximated in the relevant
frequency ranges by

σ ðSdesÞr
1

σ ðLdesÞ
{1 where σ ðLdesÞc1;

σ ðTdesÞrσ ðLdesÞ{1 where σ ðLdesÞ{1: ð1Þ
Expression (1) reveals that Ldes implicitly determines the singular
values of Sdes and Tdes. Complying with typical requirements, low-
frequency disturbances are attenuated if σ ðSdesÞ{1, while high-
frequency robustness with respect to model uncertainty is
obtained if σ ðTdesÞ{1. This result shows that R2–R3 dictate
closed-loop performance and robustness requirements.

In this paper, the H1 loop-shaping design procedure presented
in McFarlane and Glover (1990) is used to attain Ldes.

Goal 1. Given σiðLdesÞ, the goal in loop-shaping is to design weighting
functions W1ðsÞ;W2ðsÞ such that

σiðPsÞ � σiðLdesÞ i¼ 1;…;n:

where the shaped system Ps is given by

PsðsÞ ¼W2ðsÞPðsÞW1ðsÞ: ð2Þ

By loop-shaping σiðPsÞ, Goal 1 ignores nominal closed-loop
stability considerations as given in R1. In the H1 loop-shaping
design procedure, closed-loop stability is ensured by subsequently
using H1�optimization based on the designed PsðsÞ. A complete
tutorial for the design of controllers using the H1 loop-shaping
design procedure is provided in McFarlane and Glover (1990).

Remark 1. The open-loop weighting functions W1ðsÞ;W2ðsÞ in (2)
can be directly translated into equivalent closed-loop weighting
functions, as is used in common H1�optimization algorithms
including Skogestad and Postlethwaite (2005).

2.2. Directionality in multivariable systems

For multivariable systems, the input and output directionality
of P(s) complicates the design of W1ðsÞ and W2ðsÞ. This direction-
ality determines the connection between the singular values and
the individual entries of P(s), as reflected in the singular value
decomposition. The singular value decomposition at frequency ωk

is given by

PðjωkÞ ¼ UðjωkÞΣðjωkÞVHðjωkÞ; ð3Þ
with ΣðjωkÞ ¼ diagðσ1ðjωkÞ;σ2ðjωkÞ;…;σnðjωkÞÞARn�n, and unitary
matrices V ðjωkÞACn�n and UðjωkÞACn�n.

In (3), Σ represents the singular values of the system, while V
and U represent the corresponding input and output directionality.
The key point is that this directionality is frequency dependent.
Since performance and robustness requirements are specified by
means of loop-shaping Σ, the directionality of P as defined in V
and U should be accounted for in W1ðsÞ and W2ðsÞ, as illustrated in
Fig. 2. As a result, the singular values in Σ are accessible for loop-
shaping.

In classical control design, directionality is often only addressed
in the cross-over region, see, e.g., Maciejowski (1989, Section 4.3).
Typically, this design methodology is focused on determining
static transformation matrices Tu; TyARn�n such that

PdiagðsÞ ¼ TyPðsÞTu; ð4ÞFig. 1. Singular values of the desired loop transfer function LdesðsÞ for performance
and robustness.
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