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The stability and nonlinear behavior of synchronized coupled oscillators are studied via nonlinear
control theory and applied to radar beam scanning arrays. The analysis indicates that only one stable
equilibrium point exists when choosing a specific set of free running frequencies, and it is associated
with the desired phase shift, but within a given range of values. Simulation results show that radar
beam scanning arrays of oscillators with strong coupling have better angular resolution than arrays
with weak coupling, and these arrays are more robust under the influence of randomness of the free
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1. Introduction

For traditional radar beam scanning array, a phase shifter is
used with each antenna element to establish a constant phase
progression along the antenna array. A constant phase progres-
sion will force the electromagnetic wave to add up so that the
energy radiates at a particular angle to the array. Since the 1980s,
Monolithic Microwave Integrated Circuits (MMICs) have attracted
much attention due to their reproducibility and smaller dimen-
sion. However, it is difficult to integrate the bulky phase-shifters
in the monolithic module along with other microwave circuitries,
such as amplifiers, power distribution network, and DC bias
network, especially when the application involves a large beam
scanning array.

Recently, a new radar beam scanning technique using array of
coupled oscillators was demonstrated (Georgiadis, Collado, &
Suarez, 2006; Hwang & Myung, 1998; Liao & York, 1993;
Pogorzelski, Maccarini, & York, 1999; Shen & Pearson, 2004). This
alternative approach to the applications of radar beam scanning
arrays is to use coupled oscillators for achieving the constant
phase progression along the array and thus avoids any use of
phase shifters. This technique can reduce the complexity of phase
control circuits and ease the integration of phased array.
Consequently, it simplifies the architecture of the T/R module
and reduces the overall cost. The concept of this new technique is
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that the array phase distribution, and hence the radar beam
scanning angle, can be controlled by detuning free running
frequencies of oscillators. By applying this mathematical model,
it was demonstrated that a desired beam angle can be achieved by
simply detuning the free-running frequencies of two oscillators
on the edges for four-element (Liao & York, 1993) and six-element
one-dimensional arrays (Liao & York, 1994a,c) with uniform
amplitude distribution.

The nonlinear dynamics of one-dimensional coupled oscillator
array can be analyzed via two different approaches, either in the
time domain (York, 1993) or the frequency domain (Georgiadis
et al.,, 2006; York, Liao, & Lynch, 1994). In Georgiadis et al. (2006),
a semi-analytical approach based on the harmonic balance (HB)
was presented using the auxiliary-generator technique (Collado,
Ramirez, Suarez, & Pascual, 2004; Sudrez & Quéré, 2003) and was
compared with the Full HB analysis and envelope-transient
method (Ngoya & Larcheveque, 1996). The closed-loop transfer
function was presented and the stability was discussed by
examining the eigenvalues of the transfer function. Since
multiple solutions may exist, it cannot be guaranteed that this
nonlinear system always has only one single stable solution and
the system stability was also discussed in Liao and York (1993),
Nogi, Lin, and Itoh (1993), and York (1993). In practice, due to
the fabrication tolerance of the oscillator, the free running
frequency can randomly deviate from the desired value. Such
randomness of the free running frequencies can cause errors of the
phase shifts between the adjacent elements, and hence cause an
error of the main beam scanning angle (EMBSA) in the array (Shen &
Pearson, 2005).

In this paper, by employing the time domain method, a new
approach to the analysis of system behaviors of one-dimensional
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coupled oscillator arrays based on nonlinear control theory is
presented. Stability of the nonlinear coupled oscillator array
system is investigated by examining the equilibrium points
analytically and numerically. Important nonlinear phenomena
are also demonstrated by 2-D and 3-D phase portraits for the
practical design of radar beam scanning array using coupled
oscillators that were built and tested in Liao and York (1993). Note
that previous work stops at the formulation of the system
dynamics and choice of oscillator frequencies to obtain the
desired beam scanning angle. This paper also addresses the
important issues of transient behavior of the phase shifts, location
and existence of the equilibrium points and their corresponding
regions of convergence.

Results of Monte Carlo simulation are presented and demon-
strate the influence of randomness in the free running frequencies
under different coupling strengths using a real design example of
a six-element radar beam scanning array (Liao & York, 1994a). The
influence of the coupling parameter on the detuning accuracy of
oscillators is also examined using this practical design. This
provides new insights that potentially enable researchers to study
important problems such as quantifying the effect of oscillator
manufacturing defects, and closed loop control for robust beam
angle steering. This paper successfully merges two traditionally
distinct fields of engineering knowledge: nonlinear control theory
and antenna theory. It provides the radar community with an
insight into the behavior of the coupled oscillators that did not
exist before. It also provides the control community with an
exciting potential application of control theory.

2. System dynamics

To predict the phase relationships in the coupled oscillator
array, the dynamic analysis is required. The nonlinear differential
equations describing instantaneous phase dynamics of one-
dimensional coupled oscillator array were developed in York
(1993) employing the time domain method. A single oscillator is
modeled by RLC resonant circuits and coupled Van del Pol
equations. The phase dynamic equations are

N
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where w;, A;, 0;, Q &, and @y, are the free-running frequency,
instantaneous amplitude and phase of antenna, quality factor,
coupling strength and coupling phase, respectively. It is noted
that in this model, instead of considering a particular physical
mechanism of couplings, the coupling network is described
phenomenologically by

Kij = e 9%, )

where x; is the complex coupling coefficient. Nevertheless,
several physical coupling mechanisms were successfully related
to the complex number of r;; (York & Compton, 1993; York et al.,
1994). Considering practical implementation, (an appropriate
coupling network with constant coupling strengths and zero
coupling phase, (¢;; =0), is generally chosen (Liao & York, 1993,
1994a,c; York et al.,, 1994). It is noted that the selection of zero
coupling phase is just to simplify the analysis and design of the
system and will not make the problem unrealistic. For example, it
is demonstrated in Liao and York (1993) that the separation
between the active elements determines the coupling phase and
by setting a center-to-center spacing of 0.864¢, the zero coupling
phase could be obtained, where 1 is the signal wavelength in free
space.

With the simplified coupling networks, (1) can be rewritten as
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It should be noted that the phase distribution along the array steers
the main beam angle, and the amplitude distribution, in most cases,
determines the side lobe levels of the radiation pattern (Stutzman &
Thiele, 1981). In this paper, only the oscillator array with a uniform
amplitude distribution will be considered, such that A;=1,i=1,...,N.
Then the dynamic equations are

6,’ = wi—a)ie’[sin(ei—ei,l)+sin(0i—0i+1)], i=1,2,...,N, “4)

where ¢ =¢/2Q.

The radiation pattern of a phased antenna array is steered at a

desired direction by achieving a constant phase progression along
the array (Stutzman & Thiele, 1981),
AO = z)idsim//, 5)
where  is the main beam direction from broadside, d is the
spacing between adjacent elements of the array and Ay is
the wavelength with respect to the synchronized frequency.
Since the main beam scanning angle of a linear array is
determined by the element-to-element phase shift A6;, the
alternative state model of the system is to choose the phase shift
between adjacent elements A0; as the state variable. Replacing i
with i—1, (4) becomes

0i_1 = wi_1—w;i_1€[sin(0;_1—0;_3)+sin(0;_1—0y)], i=2,...,N.
(6)

Subtracting (4) by (6), obtains
Ab; = £ w;_1 SinA;_;—¢&(w; +w;_1)sinAb;
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where it is defined that
A0; = 0,—0;_4,
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Note that for i=2, Af; = 6; -0y does not exist, since there is no 6.
The first nonlinear differential equation is

Aby = —&'(wy+1)SINAO;, + &' @3 SINAO3 + 73— . 9)

Similarly, AOy,.1 does not exist either. The last equation is
derived as

AQN = ¢&'wn_1 SINAON_1—&' (N + ®N_1)SINAON + ON—CON_1. (10)

Finally the state model of choosing the phase shift Af as the state
variable is given as

Ay = —&/(wo +1)SiNAO; + £ w5 SINAO3 + 3 —1,
Ad; = £'w;_q SINAO;_1 —&/(w; + ©;_1)SINAD; + £ @; SINAD; 1 + —w;_1,

AQN =& wn_1 SINAON_1—&' (N +CUN,1)SiDA9N +WON—WN_1. 11

Its vector form will be simply denoted as
AQ =f(A0). (12)

This state model uses the relative phase shift, A0, as the state
variable instead of the instantaneous phase. Compared with
the state model involving the instantaneous phase, this model
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