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a b s t r a c t

A nonlinear observer (i.e. a ‘‘filter’’) is proposed for estimating the attitude of a flying rigid body, using

measurements from low-cost inertial and magnetic sensors. It has by design a nice geometrical

structure appealing from an engineering viewpoint; it is easy to tune, computationally very thrifty, and

with guaranteed (at least local) convergence around every trajectory. Moreover it behaves sensibly in

the presence of acceleration and magnetic disturbances.

Experimental comparisons with a commercial device illustrate its good performance; an

implementation on an 8-bit microcontroller with very limited processing power demonstrates its

computational simplicity.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Aircraft, especially unmanned aerial vehicles (UAV), commonly
need to know their attitude to be operated, whether manually or
with computer assistance. When cost or weight is an issue, using
very accurate inertial sensors for ‘‘true’’ (i.e. based on the Schuler
effect due to a non-flat rotating Earth) inertial navigation is
excluded. Instead, low-cost systems—often called attitude and
heading reference systems (AHRS)—rely on light and cheap
strapdown gyroscopes, accelerometers and magnetometers. The
various measurements are ‘‘merged’’ according to the motion
equations of the aircraft assuming a flat non-rotating Earth,
usually with some kind of ‘‘filter’’; for more details about avionics,
various inertial navigation systems and sensor fusion, see for
instance Kayton and Fried (1997) and Grewal, Weill, and Andrews
(2007).

The attitude estimation problem has received a lot of attention
especially in the aerospace engineering community, see the recent
survey Crassidis, Markley, and Cheng (2007) and the references
therein. By far the most widely used approach is the extended
Kalman filter (EKF) and its variants, see e.g. Shuster and Oh
(1981), Lefferts, Markley, and Shuster (1982) and Markley (2003).
While it is a general method capable of good performance when
properly tuned, the EKF suffers from several drawbacks: it is not
easy to choose the numerous parameters; it is computationally

expensive, which is a problem in low-cost embedded systems; it
is usually difficult to prove the convergence, and the designer has
to rely on extensive simulations.

An alternative route is to use a dedicated nonlinear observer as
proposed in Thienel and Sanner (2003) and Mahony, Hamel, and
Pflimlin (2008). The present paper follows the same lines; it uses
the rich geometric structure of the attitude-heading problem to
derive an observer by the method developed in Bonnabel, Martin,
and Rouchon (2008), building up on the preliminary work Martin
and Salaün (2007, 2008a). The proposed observer has by design a
nice geometrical structure appealing from an engineering view-
point; it is easy to tune, computationally very thrifty, and with
guaranteed (at least local) convergence around every trajectory.
Moreover it behaves sensibly in the presence of acceleration
and magnetic disturbances. Experimental comparisons with a
commercial device illustrate its good performance; an implemen-
tation on an 8-bit microcontroller with very limited processing
power demonstrates its computational simplicity.

As any other AHRS the proposed observer assumes the linear
acceleration is small so that the accelerometers measurements
are close to the gravity vector, which limits its use to ‘‘quasi-
hover’’ situations. The relevance of this assumption in the context
of a rotary wing UAV is discussed in Martin and Salaün (2010) and
Pflimlin, Binetti, Sou�eres, Hamel, and Trouchet (2010). When
velocity measurements are available, observers based on the same
approach can also be designed, see Martin and Salaün (2008c,
2008b).

The paper first presents the physical model used and proceeds
with the construction of the observer. The choice of the tuning
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parameters, taking into account possible magnetic disturbance,
and the ensuing convergence is then studied. Finally, experi-
mental results on a very low-cost implementation are reported.

2. The physical system

2.1. Motion equations

The motion of a flying rigid body (assuming the Earth is flat
and defines an inertial frame) is described by

_q ¼ 1
2q �o; ð1Þ

_V ¼ Aþq � a � q�1; ð2Þ

where:

� q is the unit quaternion representing the orientation of the
body-fixed frame with respect to the Earth-fixed frame;
� o is the angular velocity vector expressed in the body-fixed

frame;
� A=ge3 is the (constant) gravity vector expressed in the Earth-

fixed frame (the unit vectors e1,e2,e3 point, respectively, North,
East, Down);
� V is the velocity vector of the center of mass expressed in the

Earth-fixed frame;
� a is the specific acceleration vector, in this case the aero-

dynamic forces divided by the body mass, expressed in the
body-fixed frame.

The first equation describes the kinematics of the body, the
second is Newton’s force law. It is customary to use quaternions
instead of Euler angles since they provide a global parametriza-
tion of the body orientation, and are well-suited for calculations
and computer simulations. For more details see Stevens and Lewis
(2003) or any other good textbook on aircraft modeling, and
Appendix A for useful formulas used in this paper.

2.2. Measurements

In an AHRS there are no velocity measurements. Three triaxial
sensors providing nine scalar measurements are used: three
gyroscopes measure o; three magnetometers measure the
magnetic field in the body-fixed frame yB=q�1

�B �q, where
B=B1e1+B3e3 is the Earth magnetic field in the Earth-fixed frame;
three accelerometers measure a.

Clearly, the velocity V is not observable. A simple first-order
analysis shows it is moreover not detectable. Indeed, linearizing
(1)–(2) around the equilibrium point ðV ; q;o; aÞ ¼ ð0;1;0;�AÞ

yields

d _q ¼ 1
2do

d _V ¼ daþ2A� dq;

dyB ¼ 2B� dq;

where dq¼ dq1e1þdq2e2þdq3e3; but no observer

d _̂q

d _̂V

 !
¼

1

2
do

daþ2A� dq̂

0
@

1
AþLðdyB�dŷBÞ;

dŷB ¼ 2B� dq̂;

where L is a freely chosen 6� 3 matrix, is able to estimate dV:
there will be a linearly growing error due to a double zero

eigenvalue. The conclusion is the same when linearizing around
any other equilibrium point.

For that reason, it is customary to assume the linear
acceleration _V small, hence to approximate the specific accelera-
tion vector by a=�q�1

�A �q using (2). This yields the new output
yA=�a=q�1

�A �q (the sign is reversed for convenience).
Therefore the physical system (1)–(2) is seen as

_q ¼ 1
2q �o; ð3Þ

with output measurements

yA

yB

 !
¼

q�1 � A � q

q�1 � B � q

 !
: ð4Þ

2.3. Sensor imperfections

The sensors are of course not perfect, in particular they are
usually biased. A reasonable assumption is to consider these
biases constant but otherwise unknown. It would then be
desirable to estimate them online together with the attitude
and heading. While this is doable for the gyro biases, this is
impossible for the accelero biases (though up to six unknown
constants can be estimated since there are six output measure-
ments). Indeed, assume the accelerometers measure in fact
am=a+ab, where ab is a constant vector bias; (3)–(4) then becomes

_q ¼ 1
2q �o;

_ab ¼ 0;

yA

yB

 !
¼

q�1 � A � qþab

q�1 � B � q

 !
:

But this system is clearly unobservable: a first-order analysis as in
the previous section reveals one combination of the components
of ab cannot be estimated. In a similar way, it is also impossible to
completely estimate a bias vector on the magnetic measurements.

Another issue is the possible local perturbation of the magnetic
field B. Once again a linear analysis shows it is not possible to
estimate the three components of the magnetic field B (hence the
perturbation), but only the North and Down components. More-
over only one imperfection on am can be estimated without
relying on the possibly disturbed magnetic measurements. In an
AHRS it is usually desirable to use the magnetic measurements to
estimate only the heading, so that a magnetic disturbance does
not affect the estimated attitude. As seen later this decoupling can
be achieved by considering yC :¼ yA � yB ¼ q�1 � C � q, where
C :¼ A� B¼ gB1e2, rather than the direct measurement yB. Notice
that /yA; yCS¼/A;CS¼ 0, hence only eight independent mea-
surements out of nine are left; as a consequence only five
unknown constants can now be estimated. This is not a drawback
and is even beneficial since the observer will then not depend on
the latitude-varying B3.

Finally, the sensors are modeled as follows: the three gyros
measure om ¼oþob, where ob is a constant vector bias; the
three accelerometers measure am=asa, where as40 is a constant
scaling factor; the three magnetometers measure yB=bsq

�1
�B �q,

where bs40 is a constant scaling factor, which implies
yC :¼ csq�1 � C � q, where cs :¼ asbs40. There are therefore five
unknown constants, which can all be estimated, see next section.

Noise also corrupts all the measurements; it is dealt with
indirectly through the tuning of the observer gains.
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