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a b s t r a c t

The self-assembly behavior of shape-anisotropic particles at curved fluid interfaces is computationally
investigated by diffuse interface field approach (DIFA). A Gibbs–Duhem-type thermodynamic formalism
is introduced to treat heterogeneous pressure within the phenomenological model, in agreement with
Young–Laplace equation. Computer simulations are performed to study the effects of capillary forces
(interfacial tension and Laplace pressure) on particle self-assembly at fluid interfaces in various two-
dimensional cases. For isolated particles, it is found that the equilibrium liquid interface remains circular
and particles of different shapes do not disturb the homogeneous curvature of liquid interface, while the
equilibrium position, orientation and stability of a particle at the liquid interface depend on its shape and
initial location with respect to the liquid interface. For interacting particles, the curvature of local liquid
interfaces is different from the apparent curvature of the particle shell; nevertheless, irrespective of the
particle shapes, a particle-coated droplet always tends to deform into a circular morphology under posi-
tive Laplace pressure, loses mechanical stability and collapses under negative Laplace pressure, while
adapts to any morphology and stays in neutral equilibrium under zero Laplace pressure. Finally, the col-
lective behaviors of particles and Laplace pressure evolution in bicontinuous interfacially jammed emul-
sion gels (bijels) are investigated.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Colloidal particle self-assembly has become a promising bot-
tom-up route to synthesize advanced materials with novel micro-
structures and functionalities [1–4]. The basic building blocks,
individual particles, have no longer been restricted to simple spher-
ical shape with homogeneous property owing to rapid progress
over the last decade in processing techniques to fabricate shape-
anisotropic, patchy, and coated particles [1–3,5]. Particles with
anisotropic shapes and/or heterogeneous properties (such as non-
uniform charge distribution, heterogeneous affinity to liquid
phases, and different functionalities of core and shell materials)
have greatly enriched the self-assembled structures [1–4,6–9]. Col-
loidal particle self-assembly directed by liquid interfaces, as in-
spired by Pickering emulsion, has recently attracted increasing
interests [10–13]. New types of soft materials, such as the so-called
colloidosome and bijel, are created. The colloidosome [14] (also
called colloidal armour [15]) has been exploited for drug encapsu-
lation and delivery. The bijel (bicontinuous interfacially jammed
emulsion gel) was first computationally simulated [16] and then

experimentally fabricated [17,18]. Engineered colloidal particles
dispersed in multi-phase liquids offer enormous application oppor-
tunities, while also pose great challenges to a complete scientific
understanding due to the complexities of interaction forces and
microstructural evolutions. In order to understand the microstruc-
tures and properties of such multi-liquid-phase colloidal systems,
the behaviors of colloidal particles at liquid interfaces are one of
the most important issues that must be investigated. Realistic com-
puter modeling and simulation is highly desired for such a study,
which not only complements experimental studies by providing
quantitative details but can also artificially switch on/off various
interaction forces at will, enabling researchers to focus on individ-
ual interactions separately as well as any combination of them,
which are usually difficult or impractical in experiments. The pur-
pose of this paper is to present such a computer modeling and sim-
ulation study of shape-anisotropic particles at curved fluid
interfaces under the influences of interfacial tension and Laplace
pressure (the two distinct contributions to capillary forces) as well
as the resultant collective behaviors of colloidal particles and multi-
phase fluid.

In this work, we focus on shape-anisotropic particles at curved
fluid interfaces. A diffuse interface field approach (DIFA) [19–22] is
employed, which is an extension of the phase field method [23,24]
extensively used in microstructure evolution simulations.
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A Gibbs–Duhem-type thermodynamic formalism is introduced to treat
Laplace pressure, which determines heterogeneous pressure distribu-
tion without explicitly tracking inter-phase interfaces, with results in
agreement with Young–Laplace equation, while direct application of
the latter would be difficult for complex evolving colloidal morphol-
ogy. After a description of the modeling method including formulation
and calibration, computer simulations are performed to study the ef-
fects of capillary forces (interfacial tension and Laplace pressure) on
particle self-assembly at fluid interfaces in various situations, including
isolated particles of various shapes relaxing at curved liquid interfaces,
interacting particles at the liquid interfaces of Pickering emulsion drop-
lets under positive, negative and zero Laplace pressures, and the col-
lective behaviors of particles in bijels.

2. Modeling method

2.1. Basic formulation of diffuse interface field approach (DIFA)

In DIFA model of two-liquid-phase colloidal system, each fluid
phase is described by one concentration field variable ca and each
solid particle by one field gb. The total system free energy assumes
the following form

F ¼
Z
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where f({ca}, {gb}) is the nonequilibrium local bulk chemical free
energy density function that defines the thermodynamic properties
of a multi-phase system consisting of two liquid phases (a = 1,2)
and N solid particles (b = 1, . . . ,N), and is expressed as
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This Landau-type free energy function is phenomenological
in nature that defines the required energy landscape with
minima at fca¼i ¼ 1; ca0–i ¼ 0;gb ¼ 0g for liquid phase i and
fca ¼ 0;gb¼j ¼ 1;gb0–j ¼ 0g for solid particle j. For partially miscible
binary liquid with a miscibility gap, the concentrations c1 and c2

are defined, for convenience, as molar fractions of the two liquid
phases with respective equilibrium concentrations cA1 and cA2 in
terms of component A (or cB1 and cB2 in terms of component B),
thus c1 + c2 = 1 and the true local concentration in terms of compo-
nents A and B, respectively, is

cA ¼ c1cA1 þ c2cA2; cB ¼ c1cB1 þ c2cB2 ð3Þ

The gradient terms in Eq. (1) describe the energy contributions from
liquid–liquid and liquid–solid interfaces. As a result, all field variables
{ca} smoothly transit from 1 to 0 forming diffuse interfaces at both li-
quid–liquid interfaces and liquid–solid interfaces. Also, gb = 1 inside
the particle b and gb = 0 outside, and the fields {gb} also smoothly tran-
sit through diffuse interfaces. Inside liquids (gb = 0), the free energy
function in Eq. (2) describes a double-well potential for binary solution
with a miscibility gap. The constant A is an energy scaling coefficient,
and the parameters v, ka and ja are used to control the fluid–fluid
and fluid–solid interfacial energy densities. Thus, the model is able to
simulate colloidal particles of different wettabilities.

In computer simulation, the concentration field variables of li-
quid phases evolve in time following the Cahn–Hilliard equation:

@ca
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where Ma is chemical mobility, and

dF
dca
¼ @f
@ca
� jaDca ð5Þ

is the chemical potential defined within gradient thermodynamics.
In the framework of Cahn–Hilliard equation, the two-phase fluid
morphology evolves through nonlinear diffusion, thus it is assumed
that small colloidal particles are dispersed in viscous binary liquids
where Reynolds number (Re = VL/m, with V, L and m being character-
istic velocity, length and kinematic viscosity, respectively) and
Péclet number (Pe = VL/D, with D being liquid diffusivity) are small.
As in our previous works [20], colloidal particles in the DIFA model
are characterized by diffuse interface fields {gb} and evolve via ri-
gid-body motions subjected to various forces including interfacial
tension, Laplace pressure, short-range and long-range interactions
as well as Stokes’ drag force, and the equation of motion is simpli-
fied according to low Reynolds number hydrodynamics [21,22].

It is worth noting that coupled Cahn–Hilliard–Navier–Stokes
models have been reported for two-phase flows [25–28], however
the complex boundary conditions associated with a large number
of moving particles in colloid system make their applications to
colloid modeling still computationally intractable. An alternative
approach to solving the Navier–Stokes equation is the lattice Boltz-
mann method (LBM) [29–31] with demonstrated capability to treat
hydrodynamics with complex geometrical boundary conditions,
while study of moving particles with anisotropic shapes has not
yet been reported by LBM. Nevertheless, LBM offers a potential ap-
proach to combine with the DIFA model to treat colloid assembly
processes in large Reynolds number regime.

2.2. Laplace pressure

Across a curved liquid interface, there exists a pressure jump
(Laplace pressure), which is determined by the well-known
Young–Laplace equation. According to thermodynamics, the pres-
sure variation leads to chemical potential variations in the two li-
quid phases, which obey the Gibbs–Duhem relation (under
isothermal condition) [32]

cAdlA þ cBdlB ¼ dp ð6Þ

where cA and cB are the true local concentration respectively in
terms of components A and B as given in Eq. (3), lA = @f/@cA and
lB = @f/@cB are the chemical potentials in the bulk phases, and f(cA, -
cB) is the free energy density function. Using chain rules of differen-
tiation yields

lA ¼
l1cB2 � l2cB1

cA1cB2 � cA2cB1
; lB ¼

l2cA1 � l1cA2

cA1cB2 � cA2cB1
ð7Þ

where la = @f/@ca. Eq. (6) can be rewritten with respect to the equi-
librium values l0

A, l0
B and p0 in the case of flat interface as

cA lA � l0
A

� �
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B
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For the free energy function given in Eq. (2), l0
1 ¼ l0

2 ¼ 0, and
according to Eq. (7), l0

A ¼ l0
B ¼ 0, which simplifies Eq. (8) to

p� p0 ¼ cAlA þ cBlB ð9Þ

Substituting Eq. (3) and Eq. (7) into Eq. (9) gives

p� p0 ¼ c1l1 þ c2l2 ð10Þ

which can be conveniently evaluated from the free energy function
f(c1, c2) defined in Eq. (2). That is, the Gibbs–Duhem equation also
holds for our phenomenological Landau-type free energy function,
which can be understood by thinking in terms of liquid phases 1
and 2 instead of components A and B in the liquid. In particular,
the Laplace pressure causes changes in the chemical potentials
through slight shifts in compositions away from their equilibrium
values. Assuming c1 and c2 as equilibrium values in Eq. (10) gives
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