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a b s t r a c t

Persistent oscillations are a common problem in process plants since they cause excessive variation in
process variables and may compromise the product quality. This paper proposes a method for detecting
oscillations in non-stationary time series based on the statistical properties of zero-crossings. The main
development presented is a technique to remove a non-stationary trend component from a signal before
applying an oscillation detection procedure. The properties and performance of the method are analyzed
using simulation experiments, a comparative study using industrial benchmark data, and tests with
paperboard machine data. Finally, the simulation and industrial results are analyzed and discussed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Demands to optimize and run industrial processes more efficiently
are increasing constantly due to tightening global competition. Since
modern industrial processes are complex and large-scale, operator-
based monitoring cannot guarantee timely detection and reliable
diagnosis of the faults and abnormalities. Therefore, the automatic
detection and diagnosis of different abnormal and faulty conditions in
the processes have become increasingly important.

A common example of such abnormal behavior of a process plant
is persistent oscillations that readily propagate in the process and
cause excessive variation in the process variables as well as in the
product quality. They are commonly a significant reason for inefficient
operation and production losses (Jämsä-Jounela et al., 2013) and
therefore early detection of oscillations becomes highly important.

Oscillations have no clear mathematical definition, but are typically
considered as periodic patterns in a signal that are not however
disguised by noise (Karra & Karim, 2009). The oscillations in process
plants are typically originated under feedback control (Desborough &
Miller, 2001; Ender, 1993), and they may have various causes which
have been categorized by Thornhill and Horch (2007) into non-linear
and linear causes. The non-linear causes include for example extensive
static friction in the control valves (see e.g. Pozo Garcia, Tikkala,
Zakharov, & Jämsä-Jounela, 2013), on–off or split range control, sensor
faults, process non-linearities, and hydrodynamic instabilities. The
most common linear causes are poor controller tuning, controller
interaction, and structural problems involving process recycles
(Thornhill & Horch, 2007).

Detecting oscillations by visual inspection can be straightfor-
ward, but in case of a large-scale process plant, which may contain

hundreds or thousands of signals, manual analysis becomes
practically infeasible. In such cases, mathematical tools are
required to determine the presence of oscillation(s) and its basic
characteristics, such as period or magnitude. In Jelali and Huang
(2010), a list of desired features for an oscillation detection method
is presented: (i) utilization of data without further process knowl-
edge, (ii) capability to handle slowly varying trends, (iii) robust-
ness to white and colored noise, (iv) capability to handle multiple
oscillations, and (v) completely automatic operation without
human intervention.

The mathematical methods and techniques to detect oscillations
are typically based on analyzing the shape or regularity of zero-
crossings of a signal or its autocorrelation function, or spectral
content of the signal using power spectral density or various
decomposition techniques. Comprehensive reviews and comparisons
of the oscillation detection methods have been presented e.g. by
Horch (2006) and Choudhury, Shah, and Thornhill (2008).

The first approaches to oscillation detection were based on the
regularity of large enough integral absolute error (IAE) of a control
loop error signal (Hägglund, 1995; Thornhill & Hägglund, 1997).
The industrial implementation of the IAE method has been
discussed by Hägglund (2005). Forsman and Stattin (1999) pro-
vided a modified version of the IAE method in which the regularity
of upper and lower IAEs was considered separately enabling more
accurate detection of non-symmetric oscillations.

The properties of the auto-correlation function (ACF) of a signal
have also been used by several authors to detect oscillatory signals.
Miao and Seborg (1999) proposed a method based on the decay ratio
of an ACF, whereas Thornhill, Huang, and Zhang (2003) used the
zero-crossings of the ACF to determine the presence of an oscillation.
The decay ratio method measures the attenuation of oscillations in
the ACF of a signal to determine the presence of an oscillation. The
ACF method by Thornhill et al. (2003) detects the oscillations by
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means of the regularity of zero-crossings in a filtered ACF and is
capable of detecting multiple oscillations with different frequencies.

The oscillation detection methods have been developed also
based on wavelets (Matsuo, Sasaoka, & Yamashita, 2003), the poles
of autoregressive and moving-average models (Salsbury & Singhal,
2005). Moreover, a variety of multivariate methods have been
developed to decompose spectral data using for example on
principal component analysis (Thornhill, Shah, Huang, &
Vishnubhotla, 2002) and non-negative matrix factorization
(Tangirala, Kanoda, & Shah, 2007).

The most significant difficulty related to oscillation detection
using these methods is the non-stationarity of time series. Many of
the methods in the literature utilize features, such as autocorrela-
tion, that assume the stationarity of the data. Therefore, such
methods may fail if applied to time series with trends or slow
variations in their mean value. Typically, linear trends are easy to
remove by detrending and in some cases slowly varying, non-
stationary trends could be removed using appropriate high-pass
filtering. However, such procedures are very challenging to auto-
mate in order to analyze large amounts of signals without manual
effort. For example filtering techniques usually require parameters
to be determined specifically in each case.

Non-stationarity may not be a severe issue when analyzing control
loops in which the setpoint remains constant for a long time and the
controller is able to maintain the controlled variable in the proximity
of the setpoint. However, in cases where the oscillation detection is
focused on the manipulated variable, cascade controllers, or on control
loops which act as servo-type controllers following a varying setpoint,
addressing the non-stationary trends becomes more important. In
addition, oscillations may be found also in measurements that are not
a part of a control loop (Thornhill & Horch, 2007).

In order to address the aforementioned issues, the aim of this
paper is to propose a method to detect oscillatory disturbances
which is capable to handle non-stationary signals and can be used
automatically without manual preprocessing. The method utilizes
a baseline computation procedure to stationarize the signals,
computes the median and mean absolute deviation of the intervals
between consecutive zero-crossings, and incorporates them into a
robust statistic index. As a result, the oscillation detection also
becomes robust against noise in the analyzed signals. Thus, the
method becomes attractive for analyzing measurements signals
and control loops of process plants.

The paper is organized as follows. Section 2 provides a detailed
description of the proposed oscillation detection method. Next, the
simulation experiments and the tests on industrial data are described
in Section 3. The results and analysis for the simulation and industrial
tests are presented in Sections 4 and 5, respectively. Finally, the results
are discussed and the paper is concluded in Section 6.

2. The robust zero-crossing method for oscillation detection in
non-stationary time series

The proposed method, referred hereinafter as the robust zero-
crossing (RZC) method, utilizes the statistical properties of intervals
between consecutive zero-crossings (ZC) to detect oscillations. Due to
a developed baseline computation procedure the RZC method is
capable to detect oscillations also in non-stationary signals.

The RZC method first computes the moving trend, or the
“baseline” of a non-stationary signal by finding the consecutive
ZC intervals and the local minimum and maximum values of the
signal between them. For a discrete-time signal xðtÞ; t ¼ 1;…;n,
the time instants of zero-crossings tz;i are defined as

tz;i ¼ ftjsignfxðt�1Þ�bðt�1ÞgasignfxðtÞ�bðtÞgg;
i¼ 1;…;m ð1Þ

where b(t) is the baseline of the signal at time t and m is the
number of zero-crossings in x(t). The local maxima and minima,
aþ
i and a�

i , are used to calculate the shift in the signal's baseline
for each interval:

bðtÞ ¼ a�
i þaþ

i �a�
i

2
; t ¼ tz;i; i¼ 3;4;…;m

bðt�1Þ otherwise;

8<
: ð2Þ

where

aþ
i ¼maxfxðt1Þ�bðt1Þ; xðt2Þ�bðt2Þg;

tz;i�1rt1rtz;i; tz;i�2rt2rtz;i�1; ð3Þ
and

a�
i ¼minfxðt1Þ�bðt1Þ; xðt2Þ�bðt2Þg;

tz;i�1rt1rtz;i; tz;i�2rt2rtz;i�1; ð4Þ
The above formulation ensures that aþ

i and a�
i represent correctly

the oscillation's maximum and minimum amplitudes whether the
last half period has been positive or negative. In order to handle
outliers in the signal, aþ

i and a�
i are compared to their mean

values aþ ¼ 1=ði�1Þ∑i�1
j ¼ 1a

þ
j and a� ¼ 1=ði�1Þ∑i�1

j ¼ 1a
�
j , respec-

tively. If the current maximum aþ
i violates the condition

aþ
i 4aþ þ3σaþ ; ð5Þ

where σaþ is the standard deviation of aþ
j ; j¼ 1;…; i�1 the

previous value of aþ
i is used: aþ

i ¼ aþ
i�1. The minima are treated

similarly, the equivalent condition being a�
i oa� �3σa� .

Before x(t) can be stationarized, the baseline is corrected by
backward shifting and interpolation. The backward shifting is
done because b(t) is computed based on the last two half periods
and therefore it lags behind the true baseline, the estimate of
which is denoted as bc(t) hereinafter. The backward shifting is
defined as bcðtz;iÞ ¼ bðtz;iþ1Þ, and the interpolation as follows:

bcðtÞ ¼ bcðtz;iÞþðt�tz;iÞ
bcðtz;iÞ�bcðtz;i�1Þ

tz;i�tz;i�1
; tz;i�1otrtz;i ð6Þ

Finally, the signal is stationarized by subtracting the computed
baseline xsðtÞ ¼ xðtÞ�bcðtÞ. If the signal is already stationary, this
procedure does not alter its shape or properties.

Next, the determination of the presence of an oscillation is based
on calculating the regularity of zero-crossings. In an oscillating signal,
in which the period is close to regular, the average interval between
the ZCs differs from that of a non-oscillating or noise signal and the
variation of the intervals is small compared to their average length.

The above can be incorporated into a statistical test that is used
to detect oscillations. The test is based on the fact that the
distribution of time interval between consecutive zero-crossings
Δtz;i ¼ tz;i�tz;i�1 in non-oscillating signals resembles typically the
geometric distribution. This can be shown rigorously for a pure
Gaussian noise signal and it can be reasonably assumed for other
non-oscillating signals. To demonstrate this, Fig. 1 shows examples
of such signals with the corresponding zero-crossing distributions,
which appear to have a shape similar to the geometric distribution.

Since the mean and standard deviation of geometric distribu-
tion are equal, the following hypotheses can established:

H0 : Δtz ¼ σΔtz ; H1 : Δtz ¼ 3σΔtz ; ð7Þ
where Δtz is the mean and σΔtz is the standard deviation of the
interval between consecutive zero-crossings, respectively.

In order to test the hypothesis, a statistic r can be calculated as
follows (Thornhill et al., 2003):

r¼ 1
3
Δtz
σΔtz

ð8Þ

If the value of r is greater than one, the presence of an oscillation
can be determined.
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