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a b s t r a c t

In this paper we study the behavior of an inkjet-printed droplet of a solute dissolved in a solvent on a
solid horizontal surface by numerical simulation. An extended model for drying of a droplet and the final
distribution of the solute on an impermeable substrate is proposed. The model extends the work by Dee-
gan, Fischer and Kuerten by taking into account convection, diffusion and adsorption of the solute in
order to describe more accurately the surface coverage on the substrate. A spherically shaped droplet
is considered such that the model can be formulated as an axially symmetric problem. The droplet
dynamics is driven by the combined action of surface tension and evaporation. The fluid flow in the drop-
let is modeled by the Navier–Stokes equation and the continuity equation, where the lubrication approx-
imation is applied. The rate of evaporation is determined by the distribution of vapor pressure in the air
surrounding the droplet. Numerical results are compared with experimental results for droplets of var-
ious sizes.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

For many industrial applications, inkjet printing is an important
field of research. Examples of application areas are printing of ink
on paper and printing DNA or protein molecules solved in a buffer
fluid on microarray slides. The formulation of biomolecule solu-
tions that give well-controlled 3D highly functional bio-layers after
drying is regarded as one of the main challenges in the worldwide
microarray community [1].

Microarray manufacturing starts by spotting the protein sam-
ples onto a flat horizontal surface using an inkjet printer. After
the droplet collides with the surface, its kinetic energy will cause
spreading and shrinking until it reaches an equilibrium shape [1–
3]. The time scale from the impact to the equilibrium shape is
small compared to the typical time of evaporation, which, depend-
ing on humidity and temperature, takes several seconds. Hence,
the impact and the evaporation of the droplet can be separated into
two independent processes.

During the evaporation phase, the dynamics of the fluid drives
the protein molecules and a thin layer of deposit on the surface
is formed that is partly bound to the substrate after total evapora-
tion of the solvent. The way in which the biomolecules bind to the
surface determines the functionality of the microarray [4].

Therefore, the evaporation process plays an important role in the
quality of the microarray [5].

The mass transfer resulting from evaporation causes a change in
the shape of the droplet. The evaporation of a sessile droplet can
take place in two different ways: either the contact line moves
while the contact angle remains constant, or the contact line is pin-
ned while the contact angle decreases [6–8]. A mixed situation
with a stick–slip motion of receding contact angle is also reported
in literature [9]. This especially can occur during the final stages of
the evaporation process. Which of the two ways of evaporation
takes place depends on many parameters, for instance the hydro-
phobicity of the substrate, the rate of evaporation and the surface
roughness.

The first model for dewetting, proposed by Young, describes the
contact angle in terms of the interface tensions between air, liquid
and the solid substrate. Since then, numerous studies have been
conducted in order to relate the contact line behavior to the prop-
erties of the substrate. In their paper, Shin et al. [10] concluded that
in the evaporation of a sessile droplet on a hydrophobic surface, in
which the initial contact angle is considerable, the contact line has
a higher tendency to recede. In contrast, Golovko et al. [11] deter-
mined from experiments that for a droplet with a smaller contact
angle, the contact line tends to be pinned during the evaporation
process. This result is supported by experimental research by Bour-
ges-Monnier and Shanahan [12], who observed that for a contact
angle smaller than 90�, the contact line is anchored during the
evaporation.

One of the earliest contributions to the understanding of the
dynamics of the solvent and solute was made by Deegan et al.
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[13–15]. They assumed that the surface is so inhomogeneous that
the contact line remains pinned during evaporation of the droplet.
A pinned contact line is only possible if the evaporation in the area
close to the contact line is compensated by convection from the
center of the droplet to the edge. This process leads to the well-
known coffee stain effect. An extension to this model was made
by Fischer [16], who did not assume the shape of the droplet to
be spherical during the evaporation process. Instead, he proposed
a dynamic shape depending on the evaporation rate along the sur-
face area. Van Dam and Kuerten [17] proposed an extension for the
calculation of the curvature of the droplet shape in order to ac-
count for a droplet with a larger contact angle and considered a
concentration-dependent viscosity of the liquid inside the droplet.

The singularity at the contact line is the main obstacle to model
the dewetting process. The no-slip boundary condition at the li-
quid–substrate interface contradicts the fact that the contact line
recedes with a certain velocity. This is known as the Huh and Scri-
ven paradox [18]. One way to circumvent this singularity is by
introducing slip along a small distance from the contact line which
is quantified by the slip length [19–21]. Another way to solve this
paradox is to use the concept of a submicroscopic precursor film
[22,23]. In this approach, a thin film is assumed to cover the dry
area outside the wetting area. Hence, the contact line is defined
on the surface of the precursor film where fluid velocity (also
called slip) is possible. In order to ensure equilibrium at the contact
line, Schwartz and Eley [24] propose a model for disjoining pres-
sure based on the Frumkin–Deryugin model, which describes the
interaction between molecules.

Protein adsorption is a complex, dynamic process which in-
volves noncovalent interactions, including hydrophobic interac-
tions, electrostatic forces, hydrogen bonding, and van der Waals
forces [25]. This process is mainly affected by the properties of
the surface, the nature of the protein and the solution condition
[26]. One of the earliest kinetic models is derived from the classical
Langmuir equation for gas adsorption [27]. This model describes
the adsorption process in the equilibrium state, by assuming that
the adsorption is a purely reversible process. In later work by
Lundström and McQueen [28], Beisinger and Leonard [29] and
Soderquist and Walton [30], the classical steady-state Langmuir
model is extended to a time-dependent model by including more
complex physical phenomena such as resorption and reversible
adsorption. However, validation of these models only gives a
qualitative agreement with experimental results [31]. Kurat et al.
developed an adsorption model for bovine serum albumin at
silica–titania surfaces [32,33]. They showed that their theoretical
model is in good agreement with their experimental results.

In this paper, we present a numerical method for the fluid dynam-
ics and the motion and final deposition of solute molecules during the
evaporation of an inkjet-printed droplet on a solid substrate. The
method is based on models for flow of the liquid, convection and dif-
fusion of the solute and binding of the solute molecules to the sub-
strate. We will compare results of the model with experimental
results for droplets of various sizes and perform a sensitivity study
by varying the most important physical parameters in the models.

2. Mathematical models

The mathematical model covers the dynamics of the solvent
due to evaporation, the concentration of the solute and the binding
of the solute molecules to the surface. We consider two separate
cases for the contact line dynamics: a pinned and an unpinned con-
tact line. As we consider dilute solutions we neglect the influence
of concentration on viscosity. Fig. 1 depicts an axially symmetric
droplet (a spherical cap) on a horizontal substrate with H and R
the initial height and radius respectively, and hc the contact angle.

2.1. Lubrication equation

A complete model for the flow inside the droplet is provided by
the three-dimensional Navier–Stokes equation and the continuity
equation for an incompressible fluid. However, a study of the order
of the magnitude of the terms in these equations reveals that the
model can be simplified by the lubrication approximation. More-
over, only situations with cylindrical symmetry, in which the
quantities do not depend on the azimuthal coordinate and the azi-
muthal velocity equals zero, will be considered. The most impor-
tant assumptions in this simplified model are that the height of
the droplet is much smaller than its radius and that the height of
the drop is well below the capillary length. The capillary length
is defined as lr = (r/qg)1/2, where r and q denote surface tension
and mass density of the liquid and g the acceleration of gravity.
This second assumption implies that the influence of gravity is
negligible [23,34]. For a thin droplet with a small contact angle,
the first assumption can be written as � = H/R� 1. These assump-
tions lead to a simplified form of the Navier–Stokes equation
[35,16,17,36], where the radial velocity component u can explicitly
be determined from the pressure p at the liquid–air interface.

The shape of the droplet h(r, t) is determined by conservation of
mass, which incorporates changes in shape due to the flow inside
the droplet and due to evaporation
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where l is the dynamic viscosity and J(r) indicates the evaporation
velocity, which may depend on the radial coordinate. This equation
holds for both pinned and unpinned contact lines. The pressure
within the droplet is dominated by the effect of surface tension.
At the liquid–air interface, the pressure difference between the
droplet and the air is given by the Laplace pressure:
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The term in the denominator takes into account the exact radius of
curvature of an axially symmetric drop and makes it possible to ex-
tend the range of validity of the approach to larger contact angles
than possible when the lubrication approximation is made. Conse-
quently, the equilibrium shape of the droplet is a spherical cap in-
stead of a parabola, which is the equilibrium shape in the
lubrication approximation.

For an unpinned contact line, the mass loss due to evaporation
causes the contact line to move to the center of the droplet keeping
a constant contact angle. However, at the contact line a singularity
exists due to no-slip boundary condition at the liquid–substrate
interface which is known as Huh and Scriven’s paradox [18]. In

Fig. 1. Sketch of a spherical droplet on an impermeable substrate.
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