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a b s t r a c t

This paper describes the quasi-linear parameter varying (quasi-LPV) modeling, identification and

control of a Twin Rotor MIMO System (TRMS). The non-linear model of the TRMS is transformed into a

quasi-LPV system and approximated in a polytopic way. The unknown model parameters have been

calibrated by means of the non-linear least squares identification approach and validated against real

data. Finally, an LPV state observer and state-feedback controller have been designed using an LPV pole

placement method based on LMI regions. The effectiveness and performance of the proposed control

approach have been proved both in simulation and on the real set-up.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper describes the quasi-linear parameter varying
(quasi-LPV) modeling, identification and control of the twin
rotor multiple-input multiple-output system (TRMS), developed
by Feedback Instruments Limited for control experiments. This
system resembles a simplified behavior of a conventional heli-
copter with less degrees of freedom (DOF). The system is
perceived as a challenging engineering problem owing to its high
non-linearity, cross-coupling between its two axes, and inacces-
sibility of some of its states for measurements.

An attractive solution to represent non-linear systems are LPV
models. The main advantage of LPV models is that they allow
applying powerful linear design tools to complex non-linear
models (Reberga, Henrion, Bernussou, & Vary, 2005; Rodrigues,
Theilliol, Aberkane, & Sauter, 2007; Wan & Kothare, 2003). LPV
control synthesis fits into the gain-scheduling framework, while
adding stability and robustness guarantees. The strength of the
LPV approach lies in the extension of well-known methods for
linear optimal control, including the use of linear matrix inequal-
ities (LMIs), to the design of gain-scheduled LPV controllers. A
condition to apply LPV control synthesis is to transform the non-
linear model of the system into an LPV model; hence, LPV
modeling becomes a key issue in the design of LPV controllers
(Andrés & Balas, 2004; Papageorgiou, 1998; Shamma & Cloutier,
1993). Luckily, many non-linear systems of practical interest can

be represented as quasi-LPV systems, where quasi is added
because the scheduling parameters do not depend only on
external signals, but also on system variables (Kwiatkowski,
Boll, & Werner, 2006). For further information about LPV systems,
see Rugh and Shamma (2000), Toth, Abbas, and Werner (2012)
and the references therein.

The first development of LPV model identification methods
focused on a global procedure, resulting in techniques that
identify LPV models based on one set of measurements on the
system with time-varying parameters. These techniques assume
that one global experiment was enough to excite both the
control inputs and the scheduling parameters (Lee & Poolla,
1999; Nemani, Ravikanth, & Bamieh, 1995; van Wingerden &
Verhaegen, 2009). On the other hand, more recently, techniques
that identify LPV models based on different sets of system
measurements for different frozen values of the varying para-
meter have been investigated (Groot Wassink, van de Wal,
Scherer, & Okko Bosgra, 2005; Paijmans, Symens, Van Brussel, &
Swevers, 2008; Steinbuch, van de Molengraft, & van der Voort,
2003; van Helvoort, Steinbuch, Lambrechts, & van de Molengraft,
2004). These techniques start from a set of LTI identifications
based on system measurements for a set of frozen values of the
scheduling parameters. By interpolating between these local LTI
models an LPV model is obtained.

In the last decade, the modeling and experimental identifica-
tion of the TRMS have been investigated and addressed in many
papers. Radial basis function networks were used in Ahmad,
Shaheed, Chipperfield, and Tokhi (2000), where a non-linear
modeling and identification approach was presented and applied
to air vehicles of complex configuration. In Ahmad, Chipperfield,
and Tokhi (2002), a black-box system identification technique
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was used to obtain a dynamic model for a 1DOF TRMS in hover.
In Darus, Aldebrez, and Tokhi (2004), genetic algorithms based on
one-step-ahead prediction were used to identify the parameters
of the TRMS in hovering position. Shaheed (2004) obtained a
model of the TRMS using a non-linear autoregressive process with
external input (NARX) paradigm with a feedforward neural net-
work. In Aldebrez, Darus, and Tokhi (2004), the utilization of
neural networks and parametric linear approaches for modeling a
TRMS in hovering position has been investigated. In Alam and
Tokhi (2007), particle swarm optimization is used to model the
TRMS. First, 1DOF models are extracted for both vertical and
horizontal channels, respectively. Then, a 2DOF parametric model
is developed taking into consideration cross-couplings between
the channels. In Rahideh and Shaheed (2007), the system is
modeled in terms of vertical 1DOF, horizontal 1DOF and 2DOF
dynamics using Newtonian as well as Lagrangian methods.
Further improvements of such model can be found in Gabriel
(2008), Nejjari, Rotondo, Puig, and Innocenti (2011), and in
Rahideh, Shaheed, and Huijberts (2008), where, in addition,
Levenberg–Marquardt and gradient descent neural network-
based empirical models are obtained and compared to the New-
tonian and Lagrangian analytical ones. In Toha and Tokhi (2009),
the parametric modeling of the TRMS is obtained by means
of real-coded genetic algorithm. In Toha and Tokhi (2010a),
an adaptive neuro-fuzzy inference system tuned by a particle
swarm optimization algorithm is developed in search for a non-
parametric model of the TRMS. In Toha and Tokhi (2010b), a
fourth-order linear auto-regressive moving average model that
describes the hovering motion of the TRMS is obtained by means
of recursive least squares, genetic algorithms and particle swarm
optimization.

Regarding the control of the TRMS, a non-linear predictive
control has been presented in Dutka, Ordys, and Grimble (2003).
The non-linearity is handled by converting the state-dependent
state-space representation into the linear time-varying represen-
tation. In López-Martinez and Rubio (2003) and López-Martinez,
Dı́az, Ortega, and Rubio (2004), the control of the twin rotor
system using feedback linearization techniques (as full state
linearization and input output linearization) has been suggested.
In López-Martinez, Ortega, and Rubio (2003), a H1 controller for
helicopter dynamics is proposed. Later, a non-linear H1 approach
for handling the coupling considered as a disturbance that should
be rejected is introduced in López-Martinez, Vivas, and Ortega
(2005). The resulting controller exhibited attributes of a non-
linear PID with time-varying constants according to the operating
point. In Ahmed, Bhatti, and Iqbal (2009), a sliding mode control
by defining a sliding surface that allows to deal with cross-
coupling inherent in the twin rotor dynamics is considered. In
Rahideh and Shaheed (2009), the TRMS is controlled using robust
model predictive control based on polytopes. In Tao, Taur, Chang,
and Chang (2010), a fuzzy-sliding and fuzzy-integral-sliding
controller is designed to position the yaw and pitch angles of
a TRMS.

The interest in LPV systems is motivated by their use in
gain-scheduling control techniques. The possibility to embed
non-linear systems into the LPV framework, by hiding non-
linearities within the scheduling parameter, enables the applica-
tion of linear-like control methods to non-linear systems such
that, at the same time, stability and desired performance of the
closed-loop system are guaranteed.

The work presented in this paper is an improvement and an
extension of Nejjari et al. (2011) and Nejjari, Rotondo, Puig, and
Innocenti (2012). In Nejjari et al. (2011), the model proposed by
Rahideh and Shaheed (2007) was used as a starting point for
obtaining a quasi-LPV representation of the TRMS to be used for
the design of a state observer and a state-feedback controller.

The proposed modeling and control approach was tested in
simulation in order to prove its effectiveness and performance.
In Nejjari et al. (2012), the parameters of the non-linear model
were calibrated using data collected from the real lab set-up. The
obtained model was used to derive a polytopic model that could
be used for controlling the real set-up. In this paper, the modeling
and identification techniques described in Nejjari et al. (2012) are
used to obtain a polytopic model for a real TRMS. This model is
used for controlling the real TRMS, thus showing that the
approach proposed in Nejjari et al. (2011) can be successfully
applied in practical control problems. In the current paper, the
whole procedure is discussed in a more detailed and integrated
way such that this paper could be used as a guide for solving the
full LPV modeling/identification/control approach for the TRMS
system, that can be extended to the control of other complex non-
linear systems.

One of the contributions of this paper is the improvement of
the non-linear model of the TRMS proposed by Rahideh and
Shaheed (2007) taking into account some coupling phenomena
that were noticed during the identification process. Another
contribution is the proposition of a way that permits transforming
the TRMS non-linear model into a discrete-time polytopic quasi-
LPV model. The method presented in Kwiatkowski et al. (2006) for
an automated generation of affine LPV representations from non-
linear and parameter dependent systems is used. Including the
TRMS model non-linearities in an LPV framework leads to an
improvement in the modeling accuracy and control performance
of such a system. The resulting model is polytopic and quasi-LPV,
and is used directly in the control strategy. Another contribution
consists in using the so called glocal identification procedure
(Mercere, Lovera, & Laroche, 2011), to estimate a global quasi-LPV
model of the TRMS from local experiments. Once the model is
identified, the LPV control theory developed by Apkarian, Gahinet,
and Becker (1995) is applied. This control methodology allows
designing an LPV state-feedback controller that automatically
adapts to the operating point. Since not all the TRMS state
variables are measured, an LPV state observer is designed to
estimate them. Finally, an important practical contribution of this
work is the application of the proposed LPV modeling, identifica-
tion and control approach to the real TRMS system. It should be
stated that the Takagi–Sugeno (TS) modeling and control para-
digm (Takagi & Sugeno, 1985) could alternatively be used for the
control of the TRMS. According to Mäkilä and Viljamaa (2002),
Bergsten, Palm, and Driankov (2002) and Rong and Irwin (2003),
polytopic LPV models and TS models are very similar and
probably the results obtained when applied to the TRMS would
be very close.

The structure of the paper is the following: In Section 2, the
Twin-Rotor MIMO System is described and its mathematical
model is provided. In Section 3, a method for the automated
generation of LPV models is applied so as to obtain the quasi-LPV
model of the TRMS and the bounding box method is used to get a
polytopic quasi-LPV representation that can be used for design
purposes. Section 4 describes the identification approach used to
estimate the unknown parameters of the TRMS model. Section 5
reviews the background on LPV control design using LMI pole
placement and presents the design of the LPV state-feedback
controller and state observer. Finally, the TRMS identification and
control results are shown in Section 6 and the main conclusions
are summarized in Section 7.

1.1. Nomenclature

Given a vector vARnv , its ith element is denoted by vi, with
i¼ 1, . . . ,nv. In case a lower and upper bound for vi are known,

D. Rotondo et al. / Control Engineering Practice 21 (2013) 829–846830



Download	English	Version:

https://daneshyari.com/en/article/700196

Download	Persian	Version:

https://daneshyari.com/article/700196

Daneshyari.com

https://daneshyari.com/en/article/700196
https://daneshyari.com/article/700196
https://daneshyari.com/

