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a b s t r a c t

We discuss the influence of geometrical and rheological non-linearities on the prediction of rubber
friction and true contact area for rough sliding interactions. In particular, we compare the results of a
linearly-viscoelastic linear-contact model, formulated in the Fourier space, with those obtained from
non-linear finite element calculations. A sinusoidal rigid profile indenting a rubber block is here con-
sidered for simplicity, whereas the effects of non-linearity are evaluated by varying the aspect ratio,
loading conditions and sliding speed of the contact interface. It is found that accurate friction predictions
can be obtained through the linear viscoelastic model, provided that the roughness under investigation
features moderate values of root mean square slopes, whereas non-linear finite element computations
should be adopted for large root mean square slopes.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few decades, friction, wear and adhesion of polymers
have been the subject of intense theoretical [1–23] and experi-
mental research [1,2,24,25,3,4,26,15,21,27–31], motivated by a
significant number of applications ranging from classical machine
elements to bio-tribological contacts. The mechanisms originating
the macroscopically observed behavior are nowadays quite clearly
understood, at least qualitatively.1 However, the quantitative

prediction of these phenomena is still an open issue, and this can
be ascribed to the complexity of the molecular-to-macro-
phenomena involved in the contact dynamics.

Herein we focus in particular on rubber friction, which is well
known to be hysteretic and multiscale in nature [6]. A repre-
sentative contact geometry consists in a rubber block sliding on a
rough rigid surface. This simple problem is relevant to a number of
applications including dynamic seals, tire tread-road contact,
medical devices (e.g. gliding devices) and bio-tribological inter-
faces. In this representative case, assuming a steady-sliding
steady-worn rough contact [8] and dry conditions, rubber fric-
tion involves two main micro-mechanisms of dissipation, i.e.

μ¼ μrþμad; ð1Þ

with μr as the micro-rolling friction and μad as the contribution of
the true shear stresses acting in the area of real contact. The
meaning of these two terms will be expanded upon in the fol-
lowing. In the case of wet contacts, other terms originating from
the fluid viscous dissipation have to be added to the dry con-
tribution, see e.g. the recent discussion in Ref. [23].

The term micro-rolling friction for μr indicates that the dis-
sipation mechanism is shared with the more classical rubber
rolling friction of e.g. a rigid ball rolling on a rubber block. This
contribution originates from the pulsating deformation resulting
from the indentation of the rough rigid profile sliding over the
rubber bulk. The second mechanism of dissipation μad is instead
related to the shear stresses acting in the area of real contact, and
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complex polymeric networks is a task whose complexity requires a multi-
disciplinary approach. As an example, in the (relatively) simple case of a filled
rubber compound (say a filled SBR), the rheological properties exhibit non-linearity
related to filler-filler interactions, filler-rubber interactions, degree of cross-linking,
functionalization of the filler, localized slip of bindings, reduction of the entropic
states, to cite just a few. These phenomena are widely accepted to provide a phy-
sical justification to the origin of some rubber rheological behaviors, known under
the name of e.g. Payne effect, Mullins effect, etc. Despite the fundamental under-
standing of such non-linear phenomena has reached a qualitative level from sev-
eral years, their best quantitative prediction is mainly based on phenomenological
or fitting models. Furthermore, when extending the consideration of such non-
linear phenomena to the realm of friction and wear, where multiple length scales
(up to the macro-scale, including interfacial phenomena such as the Schallamach
waves, to cite one) are added to the length scale regulating the rheological pro-
cesses described above, the complexity of the problem can only be handled, at the
moment, with models (analytical or numerical) which are intrinsically qualitative.
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strictly depends on the physics of interface bonding/debonding
[32]. In particular, the simplest picture for sliding contact of a
polymer (e.g. as occurring in the case of smooth and clean rubber
in sliding contact with a smooth glass substrate) has been dis-
cussed by Shallamach [32,6], and involves the bonding/debonding
process of polymer chains from the substrate depending on the
sliding velocity. The corresponding dissipation is related to the
release of phonons propagating in the bulk of the solids.

Additional factors such as adhesion [33,9,15,34], contamina-
tion, wear-dependent rubber layering and roughening [35], tribo-
charging [36], flash temperature effects [11,37] and several other
interface phenomena [38] are well known to substantially alter the
two previous frictional mechanisms, thus making the overall
friction quite complex to capture experimentally (in each of its
contributions) as well as to predict theoretically in quantitative
terms. We stress that despite a substantial improvement in the
fundamental understanding of rubber friction, the reliable quan-
titative prediction of friction still remains an open issue.

On the analytical side, rubber friction is usually calculated in
the framework of (i) linear viscoelasticity with infinitesimal
deformations [8–11,38,39,14,16,20–23,40], as well as recurring to

(ii) the Reynolds roughness assumption, i.e. the roughness square
slope ∇h2

D E
⪡1, where h is the surface roughness, with h

� �¼ 0
(i.e., the roughness is computed with respect to a reference mid-
plane, see Fig. 1(a)). The above assumptions allow for the use of
the well-known viscoelastic half-space (VHS) theory [41] in the
modeling of the deformation response of generic contacting sur-
faces. This approach is typically adopted in multiscale [8] as well as
in multi-asperity [42,39] viscoelastic contact mechanics theories,
and also in boundary element numerical formulations
[43,20,22,23,40]. On the other hand, finite element (FE) approa-
ches are able to remove both assumptions and provide a predic-
tion of rubber friction in the finite deformation framework, for
arbitrary geometry of the contacting bodies and arbitrary con-
stitutive behavior of the material, albeit with a much higher
computational cost. However, to the best of our knowledge, how
these assumptions quantitatively affect the rubber friction calcu-
lations has never been investigated before.

The multiscale nature of the micro-rolling frictional contribu-
tion μr for contact to rough surfaces is reflected e.g. in the well-
known analytical theory by Persson [8]. At a contact scale of
representative size λ¼ 2π=q, where ζ ¼ q=q0 (q¼ q

�� ��, with q as the

Nomenclature

General variable

x Generic position with components ðx; yÞ in the refer-
ence frame moving with the rigid body

q Wave vector, q¼ qx; qy
� �

t time
v0 Sliding velocity
vn Characteristic velocity, v⁎ ¼ L0= 2πτð Þ
Ac Contact area
pn

0 Full contact pressure in the rubbery regime
Dh Deborah number, Dh ¼ v0τm=L0

VHS model variables

u xð Þ Separation field
tNðxÞ Contact pressure in the real domain

FE model variables

Fe Elastic part of the deformation gradient
Fke Elastic part of the deformation gradient for the k�th

Maxwell element
Fv Viscous part of the deformation gradient
Fkv Viscous part of the deformation gradient for the k�th

Maxwell element
Cv Right Cauchy-Green tensor for the viscous part
Π Strain energy function for neo-Hooekan material
σ Cauchy stress tensor
σeq Equilibrium part of the Cauchy stress tensor
σk
eq Non-Equilibrium part of the Cauchy stress tensor

function of the k�th Maxwell element
p Average contact pressure
gN Gap vector
μ Macroscopic friction coefficient
μav Time averaged macroscopic friction coefficient
ti; tf Initial and final instants of the time averaging period,

respectively
N Normal unit vector

Lij Residual for each point of the grid of coordinates i; j
Chk
ij Compliance matrix

ϵL; ϵu Tolerances
wzðxÞ Out-of-contact plane displacement field
u Average separation
hðxÞ Roughness surface, with 〈hðxÞ〉¼ 0
δ Contact penetration
FN Normal load
FT Friction force
μr Micro-rolling friction
tNðqÞ Contact pressure in the Fourier domain

Rubber characteristics

ν Poisson's ratio
Er1 Reduced low frequency rubber elastic modulus (rubbery

regime), Er0 ¼ Eð0Þ=ð1�ν2Þ
Λ;μ Lamé constants, respectively Λ¼ Eν= 1þνð Þ 1� 2νð Þ½ �

and μ¼ E= 2 1þνð Þ½ �
EðωÞ Rubber complex viscoelastic modulus
ErðωÞ Rubber reduced complex viscoelastic modulus,

Er ωð Þ ¼ E ωð Þ= 1� ν2
� �

Ek k�th term of the rubber relaxation spectrum
τk k�th rubber relaxation time
τm Rubber relaxation time corresponding to the max-

imum loss tangent
E1 High frequency rubber elastic modulus (glassy

regime)
Er1 Reduced high frequency rubber elastic modulus

(glassy regime), Er1 ¼ Eð1Þ=ð1�ν2Þ
E0 Low frequency rubber elastic modulus (rubbery

regime)

Roughness characteristics

L0 Wavelength of the Westergaard profile
Δ Amplitude of the Westergaard profile
q0 Spatial frequency of the Westergaard profile, 2π=L0
m2 Mean square slope
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