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a b s t r a c t

This paper focuses on the variation of the surface dimple in point contact thermal elastohydrodynamic
lubrication (EHL) under zero entrainment velocity (ZEV) condition theoretically by employing Newtonian
and Ree–Eyring fluid models. From higher surface velocity to lower value, both fluid models predict that
the depth of dimple increases before lowering again while the Newtonian central pressure keeps rising
and the Ree–Eyring one increases before showing a constant value. Moreover, there are differences in the
distributions of shear stress, temperature rise, maximum temperature rise and traction coefficient.
Finally, the influence of load on the dimple is also investigated. For the same load, the Newtonian fluid
model predicts a deeper and slimmer centralized dimple.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

According to the early EHL experiments [1,2] and theories [3],
the typical EHL film shape or thickness of point contact is char-
acterized by flat thickness in contact region and a decrease in the
oil film at the exit zone. And the contour map of film thickness
looks like a horseshoe. However, the point contact EHL film
demonstrates a dimple instead of the parallel film thickness
under some special conditions. For example, in the experiment of
Chiu and Sibley [4] and Kaneta et al. [5], their results showed that
a dimple occurred when the glass disc was moving fast while the
steel ball was stationary. Besides Kaneta et al. [5] found that the
dimple vanished on the inverse kinematic condition. This unu-
sual phenomenon was quantitatively explained by Yang et al. [6]
using the “temperature–viscosity wedge” mechanism which was
first proposed by Cameron and named as “viscosity wedge” [7]. In
the subsequent research of Kaneta and Yang [8], two or three
stable dimples could be generated between a glass disk and a 3-
in. diameter steel ball under lower or higher sliding speeds. Later
Čerma ́k performed a non-steady numerical solution and the
dimples occurred by impacting the glass with the steel ball [9].
Afterwards, Yang et al. [10] found that steady dimples connected
with a shallower furrow occurred in elliptical glass–steel contact
under pure sliding conditions. Wang et al. [11] investigated the
dimple in thermal EHL of elliptical contact with arbitrary

entrainment under pure sliding condition. More recently, Guo
et al. [12] observed an inlet dimple together with a wedge-
shaped film in point EHL experiment under pure disk sliding
condition. They attributed the phenomenon to the limiting shear
strength of lubricant. In 2014, Fu et al. [13] observed a tri-dimple
EHL film shape in pure ball sliding experiments. This phenom-
enon was explained using the localized adsorption layer formed
on the ball surface.

Another situation which creates a dimple in the Hertzian
contact zone is high slip ratio or ZEV. In 2000, Yagi et al. [14]
reported a dimple shape in the conjunction between a steel ball
and a sapphire disk under high slip ratio. For the mechanism of
oil film establishment under this severe condition, there are two
kinds of qualitatively reasonable explanations. One is immobile
boundary film effect [15], the other is the “temperature–viscosity
wedge” [6]. In the complete numerical calculations of Yang et al.
[6] and Guo et al. [16], it was found that the film formation under
ZEV was mainly ascribed to the effect of “temperature–viscosity
wedge”.

Recently one of the authors observed smaller centralized ZEV
dimples with quite low surface velocity in ball–disk optical
interferometric experiments. Aiming at explaining such “small
dimples” quantitatively, numerical simulation of line contact has
been performed by the authors [17]. Newtonian and Ree–Eyring
fluid models were employed in the simulations and it was found
that the Ree–Eyring model successfully predicted the small cen-
tralized dimples at lower surface velocities while the calculation
based the Newtonian model diverged at the same kinematic
condition. How the variation of the surface dimple in point
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contact is influenced by fluid rheology is unknown. Therefore,
thermal EHL calculations for point contact are carried out using
both Newtonian and Ree–Eyring flow models in this project.

2. Governing equations

The constitutive equations of the fluid models employed are as
follows

∂u
∂z ¼ τ

η Newtonian fluid

∂u
∂z ¼ τ0

η sinh τ
τ0

� �
Ree�Eyring fluid

8<
: ð1Þ

where τ0 is essentially the limit of Newtonian response and is
termed characteristics shear stress of Ree–Eyring fluid. Although
the Ree–Eyring sinh law was criticized for its validity by some
researchers, it is presently the most widely accepted model for
shear-thinning in EHD lubricants at high pressure [18].

For point contact ZEV condition shown in Fig. 1, let the lower
surface be surface a with a tangential velocity ua and the upper
surface is named surface b with an opposite velocity ub. An infinite
slide–roll ratio is produced. According to the work of Yang and Wen
[19], the generalized transient point contact Reynolds equation for
both Newtonian and non-Newtonian model can be written as
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The boundary and cavitation conditions of the Reynolds equa-
tion are as follows

pðxin; y; tÞ ¼ pðxout; y; tÞ ¼ pðx; 7yout; tÞ ¼ 0
pðx; y; tÞZ0 ðxinoxoxout; �youtoyoyoutÞ

(
ð3Þ

The film thickness equation is

hðx; y; tÞ ¼ h00ðtÞþ
x2
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The load balance equation can be expressed asZ Z
pðx; y; tÞdxdy¼w ð5Þ

The Roelands [20] viscosity–temperature–pressure relation
allowing the viscosity of lubricants vary in all direction is adopted
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The density–temperature–pressure [21] relation is employed as

ρ¼ ρ0 1þ 0:6� 10�9p
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In the present cases, the heat conduction in x and y directions is
trivial compared with that in z direction so that it is ignored [22].
Therefore, without considering thermal radiation, the energy
equation of the oil film can be written as
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When Eq. (8) is solved, the following boundary conditions need to
be satisfied

Tðxin; y; z; tÞ ¼ T0 ðuðxin; y; z; tÞZ0Þ
Tðxout; y; z; tÞ ¼ T0 ðuðxout; y; z; tÞr0Þ

(
ð9Þ

where T0 is the ambient temperature.

Nomenclature

a0 radius of Hertzian contact circle (m)
a, b surfaces a and b
c, ca, cb specific heat of lubricant and solids (J/(kg K))
d thickness of thermal layers in solid a and b
d dimensionless thickness of thermal layers in solid a and

b, d/a0

E0 reduced elastic modulus (Pa)
h film thickness (m)
h0 reference parameter for the dimensionless oil film (m)
h00 rigid central film thickness (m)
h dimensionless film thickness for calculation, hRx/(a0)2

H dimensionless film thickness for results, (h/Rx)�105

k, ka, kb thermal conductivity of lubricant and solids (W/(m K))
nt time step
p film pressure (Pa)
pH maximum Hertzian pressure, 3w/(2πa02) (Pa)
P dimensionless pressure, p/pH
Ra, Rb radius of steel ball (m)
Rx, Ry equivalent radii in x and y directions (m)
t time (s)
t dimensionless of time, t/(a0/u0)
T temperature (K)
T0 ambient temperature (K)
T dimensionless temperature, T/T0

Tmax dimensionless maximum temperature
u, v velocity in the x and y directions (m/s)
u0 reference velocity (m/s)
ua,b velocities of surface a and b (m/s)
U,V dimensionless velocity, u/ u0, v/ u0
U0 dimensionless reference velocity, η0u0/E0Rx
Ua,b dimensionless velocities of solids a and b, ua,b/ u0
w applied load (N)
W dimensionless applied load per unit length, w=E0R2

x
x, y horizontal coordinates (m)
X,Y dimensionless horizontal coordinates, x/a0, y/a0

z, za, zb vertical coordinates of film and solids (m)
Z dimensionless vertical coordinates of film, z/h
Za, Zb vertical coordinates of film and solids, za,b/a0

α Barus' pressure–viscosity coefficient (m2/N)
β thermal viscosity coefficient of lubricants (K�1)
η viscosity of lubricant, (Pa s)
η0 ambient viscosity of lubricant, (Pa s)
η dimensionless viscosity of lubricant, η/η0
S slide–roll ratio, 2(ua�ub)/(uaþub)
ρ, ρa, ρb densities of lubricant and solids, (kg/m3)
ρ0 ambient density of lubricant, (kg/m3)
ρ dimensionless density of lubricant, ρ/ρ0
τ0 characteristics shear stress for Ree–Eyring lubricant (Pa)
τ shear stress (Pa)
τ dimensionless shear stress, τ=pH
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