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a b s t r a c t

The non-Newtonian phenomenon is significant in hydrodynamic lubrication of some special lubricants,
or elastohydrodynamic lubrication (EHL). However, the conventional methods to solve the non-
Newtonian lubrication problem are either too complicated or inaccurate. This paper puts forward a
Reynolds equation for general lubrication problem of the non-Newtonian fluid by treating the lubricant
flow as the superposition of the Poiseuille flow and Couette flow. Then, as examples, a set of simulations
for EHL in the line contact are presented to investigate the feasibility of the method. Finally, comparisons
with the conventional methods establish the validity and simplicity of the method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

After the disc machine has been used to study the elastohy-
drodynamic lubrication (EHL) since 1960s, it is found that the
lubricant films were much weaker than that the theories predict
from the Newtonian behavior [1]. It was realized that the lubricants
behave in a highly non-Newtonian fashion when they pass through
an EHL contact region [2]. The conditions in the EHL contact region
are severe for extremely high pressure, usually above 0.5 GPa, and
very high shear rate, typically 106–108 s�1 [3]. These conditions
result in the lubricant experiencing a very large increase in the
lubricant viscosity and a very high shear stress which produce the
non-Newtonian behavior of the lubricant. The non-Newtonian
behavior may exhibit shear-thinning/thickening, limiting shear
stress, viscoelastic, or Maxwell behavior [4–6]. And some widely
accepted constitutive equations have been proposed to describe the
behavior [7–9].

With the development of the computer technology and numerical
analysis, it is now possible to numerically simulate a variety of lubri-
cation phenomena with different constitutive equations that have
reasonable agreement with the experiments and the practice [10–12].
The main methods to solve the non-Newtonian lubrication problem
are: (1) to obtain the Reynolds equation [13,14] by integrating their
constitutive equations and other related equations directly [15], (2) to
derive the Reynolds equation from the simplified Navier–Stokes
equation and the continuity equations [16], and (3) to deduce the

generalized Reynolds equation from a non-Newtonian constitutive
equation [17].

The difficulty to theoretically obtain the modified Reynolds
equation due to the complicated relationship between the shear
stress and shear rate greatly limits the application of the first
method. The Navier–Stokes equation is derived through the Cau-
chy equation and by specifying the stress tensor in terms of the
viscosity and fluid velocity through the constitutive equation. The
solution of it is flow velocities with the assumption of constant
density and viscosity. The assumptions bring about significant
errors to the velocity so that limit its application, not to mention
the difficulty of calculation.

Therefore, the generalized Reynolds equation method maybe is
the only suitable one to solve the general non-Newtonian lubri-
cation problem. This method is based on the generalized New-
tonian fluid model. And the generalized viscosity of it is simplified
to a non-linear function of the shear rate _γ or shear stress τ,
η¼ τ= _γ . Although it is applicable, it uses an average Newtonian
constitutive equation by integrating the generalized viscosity
across the film thickness instead of the real non-Newtonian one.
Besides, the generalized Newtonian fluid model is useful for steady
simple shear flows, while the time dependent effects, the elon-
gational effects, and the normal stress differences are not con-
sidered [3]. And, this method is not valid to capture the mechanics
of fluids in all situations [18,19].

Many other available methods for non-Newtonian fluid lubri-
cation problem have also been raised, such as the Reynolds
equation put forward by Najii et al. [20], the homotopy analysis
method (HAM) [21] and etc, but the complication and simplifica-
tions during the derivation greatly limit their applications.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/triboint

Tribology International

http://dx.doi.org/10.1016/j.triboint.2015.10.011
0301-679X/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ86 13450422217.
E-mail address: qqyangscut@163.com (Q. Yang).

Tribology International 94 (2016) 458–463

www.sciencedirect.com/science/journal/0301679X
www.elsevier.com/locate/triboint
http://dx.doi.org/10.1016/j.triboint.2015.10.011
http://dx.doi.org/10.1016/j.triboint.2015.10.011
http://dx.doi.org/10.1016/j.triboint.2015.10.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.triboint.2015.10.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.triboint.2015.10.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.triboint.2015.10.011&domain=pdf
mailto:qqyangscut@163.com
http://dx.doi.org/10.1016/j.triboint.2015.10.011


This paper presents a unified Reynolds equation of general non-
Newtonian fluid. Similar to the Navier–Stokes method, the flow
velocity is focused on. The main idea is to take the viscous flow as the
sum of the Poiseuille flow and Couette flow. And based on their
special characteristics, the velocity is obtained easily. Then, the Rey-
nolds equation can be deduced so that the other quantities, such as
the pressure, load, elastic deformation and the lubricant film thickness
can be found as a usual Newtonian lubrication problem. Finally,
comparisons with the conventional methods are carried out, which
have established the validity of the present method.

2. Unified Reynolds equation

2.1. Velocity field equation

A general lubrication system in the Cartesian coordinate system
shown in Fig. 1 is studied. The assumptions during the following
derivation are: the inertial and body forces of fluids are negligible,
the flow is laminar flow, the pressure of lubricant does not vary in
the film thickness direction, and no sliding occurs at the top and
bottom surfaces. The assumptions are valid for most fluid lubri-
cation applications.

The relationship between the shear stress and shear rate is
nonlinear for the non-Newtonian fluid, and the general form can
be written as:

τx ¼ f du
dz

� �
τy ¼ f

dv
dz

� �
ð1Þ

where f( � ) represents a non-linear function, τ is the shear stress, _γ
is the shear rate, and u and v are the velocities of the fluid in the x
and y direction.

The x direction is taken as an example to illustrate the method.
Based on the balanced force of arbitrary “control volume” in the x
direction, the equilibrium equation is [22]

∂τx
∂z

¼ ∂p
∂x

ð2Þ

where p is the pressure.
Substitute Eq. (1) into Eq. (2) yields

∂p
∂x

¼ ∂τx
∂z

¼ ∂
∂z

f
du
dz

� �� �
ð3Þ

Integrate Eq. (3) twice with respect to z, the velocity is

u¼
Z z

0
f �1 ∂p

∂x
zþC1

� �
dz¼ F

∂p
∂x

zþC1

� �
þC2 ð4Þ

where C1 and C2 are the constants of integration, f�1( � ) is the
inverse function of f ( � ), F( � ) is the integral function of f�1( � ).

It is obvious that the analytical expression of Eq. (4) is not easy
to get, and the analytical form of C1 and C2 are even harder to

obtain with nonzero boundary velocities. Bird [23] found that the
solution of the Newtonian fluid can be seen to be a sum of the
solutions of the two separate problems of the Poiseuille flow and
Couette flow. Therefore, we try to use it to the non-Newtonian
fluid, and treat the viscous flow as the sum of the Poiseuille flow
and Couette flow. The results show great agreement with the
conventional methods which have established the feasibility of
this treatment.

2.1.1. Velocity of the Couette flow
The Couette flow is the wall driven laminar flow, and the

velocity distribution of it is shown in Fig. 2. The Couette flow is
driven by the viscous drag force acting on the fluid and the applied
pressure gradient parallel to the flow direction. Since the pressure
vertical to the flow direction has no effect on the Couette flow,
then the equilibrium equation, Eq. (2), of it is

∂τx
∂z

¼ ∂p
∂x

¼ 0 ð5Þ

Therefore, the shear stress here is a constant. By using Eq. (4),
Eq. (5) together with the boundary conditions of the velocity of the
Couette flow, uC 0ð Þ ¼ U0;uC hð Þ ¼ Uh, it gives:

uC ¼
Uh�U0

h
zþU0 ð6Þ

2.1.2. Velocity of the Poiseuille flow
The Poiseuille flow is the pressure driven flow, and the velocity

distribution of it is shown in Fig. 3. Unlike the Couette flow, it is
significantly affected by the rheological properties of the fluid. And
the two main features of the Poiseuille flow are:

(1) The velocity is symmetrical to the centerline, z¼h/2, and

duP

dz
j z ¼ h=2 ¼ 0.

(2) The boundary velocities are both zero, that is up 0ð Þ ¼ 0;up hð Þ ¼ 0.

According to feature (a) and Eq. (3)

0¼ f
duP

dz

� �
z ¼ h=2

¼ h
2
∂p
∂x

þC1 ð7Þ
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Fig. 1. General lubrication system.
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Fig. 2. Velocity distribution of the Couette flow.
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Fig. 3. Velocity distribution of the Poiseuille flow.
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