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a b s t r a c t

A multiscale computational method (finite cell method, FCM) for heterogeneous lubrication problems is
developed in this paper. The theoretical basis and key implementation steps are systematically intro-
duced. Several representative numerical examples, including both periodic and non-periodic roughness,
are presented to demonstrate the accuracy and efficiency of proposed method. Parallel performance of
developed method are also investigated. The results show that FCM can be used in two ways. One is to
obtain the average effect using the coarse mesh, but with deterministic small-scale effect included. The
other is that deterministic small-scale effect can be recovered accurately when necessary. If combined,
these two steps can provide same accuracy as the complete deterministic modeling, yet require sig-
nificantly less computation time and storage.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Modern design of lubricated components require it is in com-
pact size and is capable of endure high power density. Surface
topography and roughness significantly influence the performance
of machine elements especially operating in a thin film or mixed
lubrication regime, because the size of topography and the film
thickness are of a comparable order.

Hence, these requirements impose a demand of understanding
tribological surfaces not only at the macroscopic level (designed
geometry) but also at the microscopic level (surface roughness) or
the sub-macroscopic level (machined surface features) in engi-
neering applications. There are mainly three types of theoretical
models used when describing the rough surface lubrication pro-
blem: stochastic, homogeneous and deterministic.

Early studies mainly employed stochastic models, using a few
statistical parameters to describe the surface and lubrication
characteristics. Among various models published, the average
Reynolds equation [1,2], which rewrites the Reynolds equation,
descripting of smooth surface lubrication flow, in terms of the
averaged flow factors, has enjoyed wide recognition and led to
numerous publications [3–7]. However, the stochastic models deal
only with the global effect of surface roughness, and predict
average parameter values of the rough surface [8]. The local

information, such as pressure/thickness distributions, which may
often be critical in the design of the tribological components, are
obviously lost. In addition, there exists ambiguities in determining
the flow factors in this approach, as demonstrated by Harp and
Salant in [5,6]. In addition, since there is a large variety of engi-
neering surfaces, it is impossible to describe their characteristics
satisfactorily with any simple mathematical expression using only
a few stochastic parameters [9].

More recently, homogenization techniques [10–16] have
attracted a great deal of attention to treat the surface roughness.
One advantage of these methods is that the flow factors can be
computed for an arbitrary periodic roughness, permitting the use
of measured surface topographies of real surfaces. Moreover, the
computations of the flow factors have rigorous mathematical
foundation and complete unambiguity [17]. However, it is impor-
tant to note that the homogenization models can only deal with
the problems with scale separation [18] and periodic roughness
[17,19]. In addition, although detailed local pressure and film
thickness distribution of a single cell can be obtained by expansion
of homogenous results, it needs too much computational effort to
extract the entire solution on large-scale.

Deterministic models, on the other hand, divide the computa-
tional domain into extremely small elements. Classical lubrication
and contact theory is subsequently applied on this highly fined
mesh, thus providing information on what happens at the
roughness level. A literature review shows that there are only very
few deterministic models [19,20] for lubricated conformal contacts
dealing with the surface roughness. Due to roughness level
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meshing, these models requires prohibitive memory and com-
puting time, which is difficult even with modern computers. Thus,
it is desirable to find a way to reduce the memory consumption
and computing time, and still includes the effects from the surface
roughness.

In previous work [21], we proposed the finite cell method
(FCM) and demonstrated the efficiency of FCM to solve the two-
scale surface texture problems, the results showed that both the
computing time and storage required by FCM are significantly
reduced compared with FEM for the periodic surface texture
lubrication problem. In the present study, the FCM is further
developed to analyze the non-periodic conformal contacted
lubrication problems with multiscale roughness. The imple-
mentation procedures of the FCM are illustrated in detail with the
emphasis on the new interpolation scheme for the construction of
the cell stiffness matrix. Parallel implementation and performance
of the developed method are also investigated in this paper.

2. Mathematical model

2.1. Governing equation

The two-dimensional, steady-state form of the Reynolds
equation for an incompressible Newtonian fluid in a laminar flow
is given by:
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where x and y are the Cartesian coordinates, parallel and normal to
the sliding direction. h and p are the local film thickness and the
pressure at a specific point within the domain. U is the relative
slide velocity of the conformal contacted surfaces, and η is the
viscosity of the lubricant.

2.2. Film thickness

Note that for all the cases in the present study, we assume that
the film thickness hðx; yÞ at a specific point within the domain
consists of two parts: one function describing the geometry of the
bearing h0ðx; yÞ and the other function describing the surface
roughness h1ðx; yÞ. Mathematically, the following representation of
the two parts (h0 and h1) of the film thickness was used:

hðx; yÞ ¼ h0ðx; yÞþh1ðx; yÞ ð2Þ

2.3. Load capacity

While obtaining the pressure distribution p by utilizing a cer-
tain numerical method, integrate this pressure over the lubrication
area yields the load carrying capacity w:

w¼∬ΩpdA ð3Þ
Where A is lubrication area.

2.4. Error estimate

Two kinds norm (L2 and Lw) are defined to estimate the relative
errors between FCM results and reference results:

L2 ¼
‖p�pref‖2
‖pref‖2

ð4Þ

and

Lw ¼ w�wref

�� ��
wref

ð5Þ

where pref is the reference film pressure and wref is the reference
film load capacity.

3. Finite cell method and its implementation

The goal of this paper is to develop the multiscale deterministic
approach [21] to solve lubrication problems with multiple scales,
which are intractable using traditional numerical methods. The
framework of the FCM that formulates a procedure the structure of
which follows the classical finite element implementation at the
macro level. First, the whole domain is meshed by coarse cell of
which dimension is much larger than the smallest roughness
features. To account for the micro-scale features, each cell is fur-
ther meshed using finer grids, and a local problem is constructed
to obtain the cell stiffness matrix. The solution procedure then
only needs to be carried out on the coarse cell meshes. After the
macro responses of the domain are got, a straightforward recovery
step is performed to get the fine-scale solutions. In general, the
FCM consists of the following three phases [21]: construction of
the cell stiffness matrix, solution of coarse-scale pressure and
recovery of fine-scale pressure. We note that the key difference of
present study and our previous work [21] is the construction of
the cell stiffness matrix, and the rest, which are still included, are
almost the same in order to give the full picture of the developed
method. A simplified lubrication model, as shown in Fig. 1, is
adopted for illustration in order to detailed explanation to the
theoretical basis and the key steps of FCM.

3.1. Construction of the cell stiffness matrix and load vector

The domain is firstly meshed by n� n coarse cells, where n
equals 2 in Fig. 1. We use condensation and interpolation proce-
dures to obtain each cell equivalent stiffness matrix and load
vector, here taking the upper left cell of Fig. 1 for illustration.

3.1.1. Condensation of coarse element internal pressure
To account for the fine-scale features inside of the cell, the cell

is further meshed by m�m traditional bilinear quadrilateral ele-
ments, as shown in Fig. 2a. The conventional FEM is then utilized
to discretise the Eq. (1), and the coarse cell equilibrium equation in
fine-scale meshes can be assembled as:

kf pf ¼ ff ð6Þ
where the subscript f denotes for fine-scale meshes. We define the
pressure at the cell boundary nodes as pb, whereas the pressure at

Fig. 1. schematic of the computational domain.
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