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a b s t r a c t

The role of micro-cavitation in Elastohydrodynamic Lubrication is numerically investigated using a
multiscale approach whereby both the small scale topographical features and the micro-cavitation of the
lubricant due to the features are resolved. Micro-cavitation and the fluid's shear-thinning property are
modelled at the small scale of topological feature. The effects of topographical features on the film
thickness of the line contact bearings and friction coefficient are presented with a focus on the role of
micro-cavitation. This highlights how a mass conserving small scale model can be used to model both
micro-cavitation and cavitation occurring at the bearing scale, and how topological features can be
designed to reduce friction while maintaining bearing load.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper the role of cavitation in an Elastohydrodynamic
Lubrication (EHL) converging–diverging line contact is investigated.
The bearing surfaces are a smooth moving roller surface relative to a
stationary, textured flat surface. Topographical changes to a lubri-
cated surface of industrial components have been experimentally
and numerically shown to improve their tribological performance in
three main aspects, the load carrying capacity, the friction coefficient
and the lubricant fluid film [1,2]. Such applications include piston
rings [3,4], mechanical seals [5,6], journal bearings [7,8], pad bear-
ings [9–12] and roller bearings in line contacts [13–17] and point
contacts [18,19].

A number of numerical approaches have been proposed to
represent lubrication of surfaces with topographical features
[7,17,18,20,21]. One of the challenges of numerically describing
these problems is the order of magnitudes difference in the size of
bearing surface topography and the bearing itself. This has led to a
number of multiscale methodologies to analyse the problem and
overcome the limitation in terms of computing costs [22–26].
Among the multiscale models, many of them employ an adapted
Reynolds equation based on Patir and Cheng's average flow model
[27] to solve the large scale fluid pressure, and the Stokes or Navier–
Stokes equations to solve the small scale fluid flow [22,24,26].
Recently, the homogeneous multiscale approach has been devel-
oped, in which the large scale fluid flow was governed by a

homogeneous pressure-gradient function whose coefficient was
obtained from the small scale simulations. These include the work
of Nyemeck et al. [25] on the hydrodynamic lubrication with rigid
bearing surfaces of seals, and the authors' work [11,12] on the EHL
simulation of micro-textured pad bearings.

The role of micro-cavitation on lubrication has been studied by a
number of investigators arising from experimental observation of
cavitation occurring in the vicinity of surface roughness [20,28]. The
role of cavitation raises further questions regarding the validity of
using a form of the lubrication equation, where cavitation effects
may not be uniform across the film thickness due to the underlying
topography; this cannot be captured by the lubrication approxima-
tion where a constant pressure is assumed across the film thickness.
Olver et al. [29] proposed an ‘inlet suction’ effect due to fluid flow
driven by cavitation pressures located in the inlet region of the pad
bearing surface. Ausas et al. [30] and Qiu and Khonsari [31] studied
micro-cavitation in textured bearing lubrication using a mass con-
serving model and compared different boundary conditions of
cavitation; the half-Sommerfield condition, Swift–Steiber (Reynolds)
condition and the Floberg–Jakobsson–Olsson (JFO) condition. It was
found that the Reynolds condition largely underestimated the
cavitation area and predicted a higher load-carrying capacity than
the JFO results. Other studies of micro-cavitation have used Navier–
Stokes based Computational Fluid Dynamics (CFD) simulations to
solve the fluid flow, for example, Shi and Ni [32], Wahl et al. [33] and
Meng and Yang [34]. However, these studies of micro-cavitation
were all modelled at a single scale, where the topographical features
were described over the entire lubrication domain. The number of
simulated micro dimples or grooves in these studies was limited to
up to 10 due to the very fine mesh required to resolve the small scale
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features and cavitation. In real engineering applications the number
of micro dimples (and roughness) could be much larger on a real
textured bearing's surface, and a multiscale method is especially
relevant to solve such problem.

In this paper the Heterogeneous Multiscale Method (HMM) [35] is
applied to EHL as derived by the authors [11,12,36] and extended to
include cavitation effects, via the application of a mass-conserving
approach at both small and large scales. This enables the model to
capture cavitation at both scales. The pressure gradient-mass flow
rate relationship is obtained from a homogenised local scale solution.
This relationship is subsequently used at the global scale as a
governing equation of fluid flow, and solved along with the conserva-
tion of mass. In this work cavitation is considered at the local scale via
a predefined threshold cavitation pressure. The effects of the micro-
texture's geometrical parameters on the bearings' lubrication film
thickness and friction coefficient are presented. The piezo-viscous and
shear-thinning effects are discussed and the importance of the role of
micro-cavitation at the small scale is highlighted.

2. Numerical methodology

2.1. Geometry and materials

In this study, the global geometry of the lubrication model is a
two-dimensional cylindrical line contact. The smooth cylinder
rotates relative to a textured stationary surface, as shown in
Fig. 1. The material of the plane is PTFE with an elastic modulus
(E) of 0.5 GPa and Poisson's ratio (υ) of 0.4. The cylinder is
assumed to be rigid compared to the soft PTFE bearing surface.
The radius of the cylinder (r) is 25 mm and the rotation speed (ω)
is 80 rad/s, and equivalent to a sliding speed (U0) of 2 m/s. The
micro-pocket length (L) ranges from 20 μm to 100 μm and the
depth (d) from 0 μm to 30 μm. The geometrical and material
parameters are listed in Table 1.

2.2. Large scale simulation

The large scale simulation describes the fluid–structure inter-
action in the global lubrication domain, where the fluid pressure is

solved simultaneously with the elastic deformation of the bearing
surfaces. The difference between the current study and classical
EHL analysis is that the governing equation for the hydrodynamic
pressure is a homogenised equation from the small scale simula-
tions, rather than the Reynolds equation, expressed as

dp̂
dx

¼ f ðg; p̂; _mÞ ð1Þ

together with the mass conservation equation

d _m
dx

¼ 0 ð2Þ

The pressure gradient (dp̂=dx) is a homogenised function of the
pressure (p̂), mass flow rate ( _m) and film gap (g), interpolated from
a series of small scale solutions. The large scale boundary condi-
tions used to solve Eqs. (1) and (2) are that the pressure at the
bearing inlet and outlet boundaries is equal to zero:

p̂in ¼ p̂out ¼ 0 ð3Þ
The line contact bearing load is balanced by an integral of the
average small scale pressure (i.e., load per unit length pn), along
the line contact domain. The average small scale pressure (pn) was
defined in Eq. (17) in Section 2.3.2 ‘Small Scale Simulations’.

w¼
Z xout

xin
pn dx ð4Þ

The geometry equation is expressed as a sum of the rigid
displacement (e, an unknown constant determined by load w),
rigid gap geometry and the surface deformation (δ):

h¼ eþx2

2r
þδ ð5Þ

δ¼K � pn ð6Þ
where the displacement influence coefficient matrix K was obtained
using Green’s function [37] for linear elastic contact model.

2.3. Small scale simulations

The small scale problem is described by the flow equations and
those governing the elastic deformation of the small scale features.

Nomenclature

d Cell depth [m]
E Young's modulus [Pa]
E0 Equivalent Young's modulus [Pa]
e Rigid displacement [m]
h Large scale film thickness [m]
g locally film gap [m]
K Displacement influence coefficient matrix [m3=N]
KG Non-diagonal terms in K (with respect to the global

deformation) [m3=N]
kL Diagonal element in K (with respect to the local

deformation) [m3=N]
L Cell length [m]
n Number of large-scale mesh grid
p Pressure [Pa]
p̂ Homogenised pressure at the large scale [Pa]
p* Small scale average pressure [Pa]
pc Threshold cavitation pressure [Pa]
P Dimensionless small scale pressure
P̂ Dimensionless homogenised pressure
_m Mass flow rate per unit length [kg/m/s]

r Radius of cylinder [m]
t0 Equivalent small-scale cell height [m]
U0 Sliding speed of the roller [m/s]
u Fluid velocity vector [m/s]
w One-dimensional load per unit length [N/m]
x Coordinate in direction of fluid flow [m]
X Dimensionless coordinate of x
α Pressure–viscosity coefficient
_γ Shear rate [1/s]
δ Elastic deformation [m]
ε Strain
η0 Viscosity at zero shear rate [Pa s]
η1 Viscosity at infinite shear rate [Pa s]
ηn Generalised viscosity in Carreau model [Pa s]
θ Density fraction in cavitation model
μ Friction coefficient
σ Normal stress [Pa]
τ Shear stress [Pa]
ν Poission's ratio
ρ0 Ambient fluid density [kg=m3]
ρ Generalised fluid density [kg=m3]
ω Rotation velocity of cylinder [rad/s]
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