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a b s t r a c t

In the current work, the effect of stress relaxation in contact between sinusoidal surfaces is studied using
FE simulations. There are a few works on the elastic and elasto-plastic contact between sinusoidal
surfaces, but the transient effects such as creep and stress relaxation are not considered in these works.
Stress relaxation causes significant change in the contact area and pressure between the contacting
surfaces. The Garofalo formula is used to model the transient behavior of stress relaxation. The results for
the contact area and contact pressure are presented and discussed. Empirical equations are developed to
predict contact area and pressure by fitting to the FEM results. The equations are dependent on the initial
surface separation, aspect ratio, and the Garofalo constants.

Published by Elsevier Ltd.

1. Introduction

The contact between rough surfaces has been a popular topic to
researchers for many years. Most of the previous models on the
contact between rough surfaces assume a cylindrical or spherical/
ellipsoidal shape for the geometry of the asperities on the surfaces
[2–11]. More recent models consider a sinusoidal shape for the
asperities because it models the geometry of real surfaces better
especially for heavily loaded contacts [1,12–16]. It is shown for the
two-dimensional sinusoidal contacts [14] and three-dimensional
sinusoidal contacts [15] that the maximum average pressure
increases past the conventional hardness, H, limit of 3Sy obtained
assuming spherical geometries [17]. Several works have shown
experimentally measured contact pressures much higher than
three times the yield strength, 3Sy [18,19]. Furthermore, the
interaction between adjacent asperities is addressed by applying
symmetric boundary condition in a sinusoidal asperity contact
model which is overlooked in works based on spherical asperities.
Also, most of the multi-scale rough surface contact models con-
sider the multi-scale nature of surface roughness by transforming
a rough surface into sums of sine and cosine functions using a
Fourier series or Weierstrass profile [13,20–22]. Therefore, it is
logical to use a sinusoidal instead of a spherical shape in modeling
the asperities.

The elastic contact between two-dimensional sinusoidal sur-
faces was analytically solved by Westergaard [12] for the whole
range of contact. Johnson et al. [1] presented two asymptotic
solutions for the elastic contact of three-dimensional sinusoidal
surfaces, but no analytical solution is available for the entire load
range. Jackson and Streator [22] developed an empirical equation
based on the JGH data [1] for the whole range of contact from early
contact to complete contact. However, plastic deformation is
practically inevitable in most cases of contact between metallic
rough surfaces due to high loads. Gao et al. [14] considered plastic
deformation in their contact model. They modeled a two-
dimensional elastic-perfectly plastic sinusoidal contact using the
finite element method (FEM). Krithivasan and Jackson [15] and
Jackson et al. [16] considered both elastic and elasto-plastic
sinusoidal contacts in three-dimensions in their work, and pre-
sented empirical equations for the contact area as a function of
contact pressure for the whole range of contact. Their equations
are used in this work to verify the developed model. Rostami and
Jackson [23] also presented empirical equations for the surface
separation in elastic and elasto-plastic sinusoidal contacts in
three-dimensions. These elastic and elasto-plastic contact models
between sinusoidal surfaces have been used in several multi-scale
contact models [13,20–22,24–26] to predict the real contact area
between two rough surfaces.

Stress relaxation and creep are time dependent phenomena
which cause a change in the stress and strain in a material over
time. For contacting surfaces, Stress relaxation and creep cause a
change in the contact area and contact pressure over time. Stress
relaxation refers to the stress relief of a material under constant
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strain condition, and creep describes how strain in a material
changes under constant stress condition. In most works, the terms
“creep strain” and “creep stress” are used for both cases of stress
relaxation and creep.

Any material can experience stress relaxation or creep if certain
conditions are met. It could be metals at high temperatures,
polymers at room temperatures, and any material under the effect
of nuclear radiation. It should be noted, although there is no
recovered creep strain or reversible behavior under normal oper-
ating conditions, elastic deformations are still recovered. The
stress relaxation or creep behavior depends on the temperature
and the stress level to which the material is exposed and depends
noticeably on the time duration of application of these conditions.
There have been several works on modeling the stress relaxation
and creep effects in the contact between single asperities [27–29].
Most of the earlier models on these effects have assumed a rigid
spherical punch indenting an elasto-plastic flat surface [30–34].
Different effects in contact between rough surfaces such as the
dwell-time dependent rise in static friction [35,36], the velocity
dependent dynamic friction [37–40] or friction lag and hysteresis
[41] can be explained by the creep theory. Many experimental
studies concerning the increase of friction with dwell time are
published i.e., [42–46]. Malamut et al. [35] studied the effect of
dwell time on the coefficient of static friction in spherical contacts
using FE simulations.

The previous works on the stress relaxation and creep effects in
contact between surfaces used a cylindrical [38–40,47,48] or
spherical [27–29] geometry for the asperities, but in the current
work a sinusoidal asperity is considered in contact with a rigid flat
surface under the stress relaxation effect. The change in the static
friction between two solids with time is the main motivation for
modeling the stress relaxation effect.

The current analysis uses the same geometry used in Johnson
et al. [1] and Krithivasan and Jackson [15] in order to compare the
static results to their works. The sinusoidal geometry is described by

h¼ Δ 1� cos
2πx
λ

� �
cos

2πy
λ

� �� �
ð1Þ

where h is the height of the sinusoidal surface from its base, Δ is the
amplitude of the sinusoidal surface, and λ is the wavelength of the
sinusoidal surface. The contour plot of the sinusoidal surface is
shown in Fig. 1.

2. Elastic sinusoidal contact

As mentioned before, Johnson et al. [1] developed asymptotic
solutions for contact area of a perfectly elastic contact of three-
dimensional sinusoidal shaped surfaces. In their work, p is defined
as the average pressure on the surface (considering both contact-
ing and non-contacting regions), and pn is defined as the average
pressure that when applied to the surface causes complete
contact. pn is given as

pn ¼
ffiffiffi
2

p
πE0Δf ð2Þ

Nomenclature

A area of contact
B aspect ratio (ratio of the sinusoidal asperity amplitude

to its wavelength)
B0 creep constant of the power law
B″ creep constant of the exponential law
β creep constant of the exponential law
C critical yield stress coefficient
Ci; ~Ciði¼ 1�4Þ creep constants of the Garofalo, strain harden-

ing, and modified time hardening laws
d material and geometry dependent exponent
E elastic modulus
E0 reduced or effective elastic modulus
ET tangent modulus
ey yield strength to effective elastic modulus ratio, Sy=E0

f spatial frequency (reciprocal of wavelength)
F contact force
g average surface separation
h height of the sinusoidal surface from its base
H hardness
n creep constant of Garofalo law
pn average pressure for complete contact (elastic case)

pn
ep average pressure for complete contact (elasto-

plastic case)
p or pave average pressure over the nominal area of contact
Sy yield strength
t contact time
τ dimensionless contact time
Δ amplitude of the sinusoidal asperity
λ wavelength of the sinusoidal asperity
v Poisson0s ratio
s stress
ε strain
δ interference between the sinusoidal asperity and the

rigid surface
a; b curve-fitting constants for contact area
a0; b0; c0; d0 curve-fitting constants for contact pressure

Subscripts

0 initial or at t¼ 0
c critical value at onset of plastic deformation
cr creep dependent parameter
ep elasto-plastic
JGH from model by Johnson et al. [1]
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Fig. 1. Contour plot of the sinusoidal surface geometry.
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