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Robust control of the missile attitude based on quaternion feedback
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Abstract

In this paper, a robust control scheme based on the quaternion feedback for attitude control of missiles employing thrust vector control

is proposed. The control law consists of two parts: the nominal feedback part and an additional term for ensuring robustness to the plant

uncertainties. For the proposed control scheme, a stability analysis is given and the performance is shown via computer simulation.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In general, most attitude control schemes of tactical
missiles are based on the Euler angle feedback concept.
However, modern satellites or spacecrafts have a trend
toward using quaternion feedback instead of Euler angle
feedback (Weiss, 1993; Wie & Barba, 1985; Wie, Weiss,
& Arapostathis, 1989). As described in the references,
quaternion control enables the attitude change along the
shortest path by matching the control torque vector to
the eigenaxis which is not possible with Euler angle
control because Euler angles are based on the concept of
sequential rotation. Moreover, Wie et al. (1989) showed
that the quaternion feedback control system is globally
stable and near-eigenaxis rotation can be achieved even
in the presence of initial body rate and inertia matrix
uncertainty.

However, similar research is hardly found in the area
of attitude control for the tactical missiles operated in
the low atmosphere. It seems due to a view that the
quaternion feedback will not retain its advantage where
the aerodynamic effects are not negligible. But Song
et al. proposed a control scheme which might be
prospective even in this case (Song, Nam, & Kim,

2000). In this paper, the results are extended to the case
where the plant uncertainties exist.

Several control design methods for the uncertain
dynamical systems are introduced in Barmish, Corless,
and Leitmann (1983), Corless and Leitmann (1981) and
Khalil (1996). Most of them require that the uncertain
system satisfies the so-called ‘‘matching condition.’’ The
plant uncertainty considered here satisfies this condi-
tion. Based on this plant uncertainty model and a robust
stabilization method given in Khalil (1996), an attitude
controller for a vertical launch anti-submarine rocket
(VLASR) model is constructed. This controller consists
of two parts: a nominal feedback part and an additional
term ensuring the robustness to the plant uncertainties.

This paper is organized as follows. First, missile
dynamics with uncertainty and kinematics will be
described. After that, a nominal controller and robust
controller will be given with a stability analysis. Finally,
a design example will be given with computer simulation
results which show that the robust controller has better
performance than the nominal one.

2. Missile dynamics with uncertainty

Missile motion is described by six degrees of freedom
equations which consist of the translational and rotational
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motion equations as follows:

m_vþmðx� vÞ � g ¼ FaðvÞ þ F tðuÞ, (1)

J _x ¼ x� JxþMaðv;xÞ þM tðuÞ, (2)

where v ¼ ½v1; v2; v3�
T is the linear velocity vector, x ¼

½o1;o2;o3�
T is the angular velocity vector, u ¼

½dr; dp; dy�
T is the control input vector, m is the mass of

a missile, J is a inertia matrix, g is gravity, Fa and Ma

are aerodynamic force and moment vectors, respec-
tively, and F t and M t are control force and control
moment vectors, respectively.

Now, in order to simplify Eqs. (1) and (2), the
following assumptions are used:

(A1) Velocity and altitude of the missile are constant.
(A2) Gravity is neglected.
(A3) v2 and v3 are much smaller than v1.
(A4) Missile body has the symmetrical cruciform.
(A5) F tðuÞ and M tðuÞ are linear in u and invertible.

Under A1–A4, the translational motion equation (1) can
be written as (Hemsch & Nielsen, 1986):

_a ¼ o2 þ ZoðQ; n; aÞ � Ztdp,

_b ¼ �o3 þ Y oðQ; n;bÞ þ Ztdy, ð3Þ

where a is the angle of attack, b is the sideslip angle, Q is
the dynamic pressure, and n is Mach number. ZoðQ; n; aÞ
and Y oðQ; n;bÞ are aerodynamic coefficients, and Zt is
the control thrust coefficient. They are given by

ZoðQ; n; aÞ ¼
QS

mv1
Czðn; aÞ,

Y oðQ; n;bÞ ¼
QS

mv1
Cyðn;bÞ,

Zt ¼
Tc

mv1
, ð4Þ

respectively, where Czðn; aÞ and Cyðn;bÞ are nondimen-
sional aerodynamic coefficients, S is the reference area,
and Tc is the magnitude of the control thrust. Eq. (3)
can be rewritten in a compact form:

_z ¼ hðz;xÞ þ F0 þ Eu, (5)

where

z ¼
a

b

" #
; hðz;xÞ ¼

o2

�o3

" #
; F0 ¼

Z0

Y 0

" #
,

E ¼

0 0 0

0 �Zt 0

0 0 Zt

2
664

3
775.

For the missile with cruciform configuration, Ma in
Eq. (2) can be described as

Ma ¼

Lo

Mo

No

2
664

3
775þ

Lpo1

Mqo2

Mqo3

2
664

3
775 ¼

QSDClðn; aÞ sin 4g

QSDCmðn; aÞ

QSDCmðn;bÞ

2
664

3
775

þ
QSD2

2v1

ClpðnÞo1

CmqðnÞo2

CmqðnÞo3

2
664

3
775 ð6Þ

where D is the reference length, Cl , Cm, Clp, and Cmq are
the nondimensional moment coefficients, and g is the
bank angle defined by

g ¼
v2

v3
¼

b
a
.

Moreover, without loss of generality we assume

J ¼

J1 0 0

0 J2 0

0 0 J2

2
64

3
75

for some constants J1, J2. The control moment M t is
given by

M t ¼

Ltdr

Mtdp

Mtdy

2
64

3
75 ¼

Tclydr

Tclxdp

Tclxdy

2
64

3
75, (7)

where Tc is the magnitude of the control thrust, lx and ly

are the moment arms defined by the distance from the
center of gravity to the location of the control thrust
vector, and dr, dp, and dy are control inputs.

Now, consider the uncertainty terms by DF0, DE, DJ,
DMa, and DB corresponding to F0, E, J, Ma, and B,
respectively. Then, the motion Eqs. (2) and (5) can be
modified as

ðJ þ DJÞ _x ¼ XðJ þ DJÞxþMa þ DMa þ ðB þ DBÞu,

(8)

_z ¼ hðz;xÞ þ F0 þ DF0 þ ðE þ DEÞu (9)

with the skew symmetric matrix X and the input matrix
B defined by

X ¼

0 o3 �o2

�o3 0 o1

o2 �o1 0

2
64

3
75; B ¼

Lt 0 0

0 Mt 0

0 0 Mt

2
64

3
75.

From the matrix inversion lemma

ðJ þ DJÞ�1 ¼ J�1 � DX (10)

with DX defined by

DX ¼ J�1 DJðI þ J�1 DJÞ�1J�1.

Eqs. (8) and (10) lead to

_x ¼ f ðx; tÞ þ DH þ ðG þ DGÞu, (11)
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