
Author's Accepted Manuscript

Plastic ratchetting of railhead material in the Vicinity of insulated rail joints with wheel and thermal loads

Nirmal Kumar Mandal

www.elsevier.com/locate/wear

PII: S0043-1648(15)00010-1

DOI: http://dx.doi.org/10.1016/j.wear.2015.01.003

Reference: WEA101224

To appear in: Wear

Received date: 30 August 2014 Revised date: 3 January 2015 Accepted date: 3 January 2015

Cite this article as: Nirmal Kumar Mandal, Plastic ratchetting of railhead material in the Vicinity of insulated rail joints with wheel and thermal loads, *Wear*, http://dx.doi.org/10.1016/j.wear.2015.01.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCR

Plastic ratchetting of railhead material in the vicinity of insulated

rail joints with wheel and thermal loads

Nirmal Kumar Mandal

Central Queensland University

Centre for Railway Engineering,

Rockhampton 4702,

Australia

ABSTRACT

A detailed finite element analysis (FEA) was carried out to present a stress analysis of an

insulated rail joint IRJ considering a wheel load on the IRJ producing stresses above the

shakedown limit of the rail material. A 5 mm endpost thickness is considered at the

discontinuity in the rail steel which is required to form the 6 bolt IRJ. In addition, an axial

pressure load of 165 MPa was also considered on the rail faces at the discontinuity in the

form of compression (buckling) and tension (pull-apart). A modified Hertzian contact

pressure distribution is considered in this simulation. 100 cycles of dynamic wheel load of

174 kN were applied to the rail top materials in the vicinity of the IRJ.

Residual stress and plastic strain, equivalent plastic strain and permanent deformation of

railhead material in the vicinity of IRJ are presented. The strain data depict damage of

endpost materials and ratchetting failure of rail ends due to vertical wheel load and axial

thermal load. The ratchetting failure modes follow the established trend of decay in the

ratchetting rate in successive wheel load cycles. The size of the plastic zone in the railhead

materials is also identified.

Key words: Thermal load; wheel-rail contact; shakedown theory; elastic-plastic material

behaviour; ratcheting damage and sub-surface plastic zone

Corresponding Author: Nirmal Kumar Mandal, Tel: +617 4923 2064, Fax: +617 4930 6984,

E-mail: n.mandal@cqu.edu.au

1

Download English Version:

https://daneshyari.com/en/article/7004372

Download Persian Version:

https://daneshyari.com/article/7004372

<u>Daneshyari.com</u>