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Abstract

This paper presents the results which relate to the development and application of evolutionary multi-objective optimisation

algorithms for the design of alloy steels using crisp as well as fuzzy logic based objective functions. The applied optimisation algorithms

aim at determining the optimal heat treatment regime(s) and the required weight percentages for the chemical composites to obtain the

pre-defined mechanical properties of steels, such as the ultimate tensile strength (UTS) or better known as tensile strength (TS) and

elongation (ELO). During this process, the targeted mechanical properties and the reliability of their predictions are considered

simultaneously in the above objective functions. Results show that for the multi-objective case the use of fuzzy logic based functions, as

opposed to crisp ones, is beneficial especially when the application can tolerate a relatively low degree of discrimination between the so-

called multi-objective ‘pareto’ solutions.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the steel industry, heat treatments are commonly used
to develop the required mechanical properties in a range of
alloy steels. The heat treatment process consists of
hardening and tempering stages. During the hardening
stage, the steel is soaked at a temperature of typically
850 1C to obtain a fully austenitic microstructure. This is
followed by quenching in an oil or water medium to
achieve the transformation to martensite. Tempering is
performed to improve ductility and toughness by heating
the steel to typical temperatures in the ranges 500–670 1C
and then air-cooling. The mechanical properties of the
material are dependent on many factors, including the
tempering temperature, quenchant, chemical composition
of the steel, geometry of the bar, etc.

Determining the optimal heat treatment regime and the
required weight percentages for the chemical composites to

obtain the pre-defined mechanical properties of steel is a
vital challenge for the steel industry. Because the available
physical knowledge of the heat treatment process is not
enough to allow one to compute the mechanical properties,
these will be obtained through elicited data-driven models.
To this end, and over the last few years, empirical models
using neural networks (NNs) have been developed and
validated based on industrial data relating to a range of
alloy steels (Tenner, 1999; Mahfouf, Jamei, & Linkens,
2004). These predictive models are utilised for the
prediction of the mechanical properties of steel, namely
the tensile strength (TS) and the elongation (ELO),
although the study can also be extended to other
mechanical properties such as the reduction of area
(ROA) and the Charpy toughness.
In this current research work, the above models are used

to facilitate the optimisation process for single and multi-
objective approaches. In addition, two sets of crisp and
fuzzy objective functions are defined to compare the
performance of the optimisation algorithms. With this in
mind, evolutionary multi-objective (EMO) algorithms are
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applied to a set of decision variables, which include the
chemical composition of the steel as well as the tempering
temperature profile to obtain the pre-specified mechanical
properties. As will be seen later, the study was confined to
four (4) chemical compositions, namely carbon (C),
manganese (Mn), cromium (Cr), molybdenum (Mo), and
the tempering temperature, although such a set can be
extended easily to include more decision variables. Fig. 1
shows that the optimisation mechanism consists of two
important components: a reliable prediction model and an
efficient optimisation paradigm, which is in fact equivalent
to an inverse modelling problem or a ‘reverse engineering’
problem.

One way of realising such optimisation operation is to
‘simply’ invert the original forward model (see Fig. 1) and
obtain the one single solution. However, such a solution is
not always unique, especially when more than one
objective are taken into consideration. Moreover, the
CORUS metallurgists, who were consulted in relation to
this study, expressed the view that not only would they be
interested in those solutions which were more familiar to
them, but also in the other solutions which they had never
encountered before, i.e. new chemical compositions and
new tempering temperature which would apparently lead
to similar mechanical properties. While the metal industry
so far used ‘know-how’ to arrive at what is considered to be
‘acceptable outcomes, several other authors tackled this
problem within the context of mathematical formulations
(Yegerov & Dulikravich, 2004). In this work, the authors
used a large experimental database to search for the
solution(s) in response a set of optimisation criteria. Hence,
the number and the quality of the solutions will very much
depend on the size of the database itself. In this present
study, it is proposed to solve this optimisation problem
using evolutionary computing (EC) techniques which have
the distinct advantage of searching relatively large solution
spaces. These spaces would be searched within the domain
of single-objective as well as multi-objective optimisations.
Recently, many evolutionary-based algorithms were pro-
posed to tackle multi-objective problems (MOPs), never-
theless some of these proved more effective than others for
a range of applications (Zitzler & Thiele, 1999). In this

research work, the strength pareto evolutionary algorithm
2 (SPEA2) proposed by Zitzler, LaumaNN, and Thiele
(2002) is implemented and the obtained results are
presented and discussed.
This paper is organised as follows: Section 2 will

introduce briefly the models which were elicited to describe
the mapping between the alloy compositions, tempering
and quenching temperatures and the corresponding me-
chanical properties. Section 3 will present and discuss the
obtained results from applying a single-objective optimisa-
tion algorithm using genetic algorithms (GA) (Goldberg,
1989). Section 4 will give a brief introduction to EMO and
will present and analyse the results obtained following the
application of such techniques. In this section, the results
which relate to the use of fuzzy objective functions will also
be presented and discussed. Finally, Section 5 will draw
conclusions in relation to this overall study.

2. Intelligent modelling of mechanical properties of alloy

steels

Since the available physical knowledge of the heat
treatment process is not enough to allow one to compute
the mechanical properties, these will be obtained through
the elicited data-driven models. Over the last few years,
empirical models using NNs have been built to predict
mechanical test results for steels covered by a wide range of
training data (Tenner, 1999), Jones and MacKay (1996),
Badmos, Bhadeshia, and Mackay (1998) and Dulikravich,
Egorov, Sikka, and Muralidharan (2003). These models are
used to facilitate the finding of the optimal heat treatment
regime and the weight percentages for the chemical
composites to obtain the desired TS, ROA, and ELO.
The multi-layer perceptron (MLP) NN (Bishop, 1995) is

used for developing all the prediction models, due to its
flexibility and universal approximating capability (Hornik,
Stinchcombe, & White, 1989; Kurkova, 1992). The training
of a MLP network typically involves three stages:
initialisation, forward processing, and backward proces-
sing. The initialisation sets up the NN architecture and the
number of hidden layers, the activation functions, the
training algorithms, and the weighting matrices initialisa-
tion. The forward processing calculates the network
outputs according to the inputs. The backward processing
takes care of the network weights based on the error
performance with a selected training algorithm, which is
the backbone of NN modelling.
The NN models used for this research consist of an

Ensemble of 10 NN based models which used 5707 data
sets for ELO, 5559 data sets for ROA, and 5711 data sets
for TS. An ensemble model development involves two
stages: generation of individual candidate NNs and
combining the NNs into an ensemble model. In the first
stage, one should to determine what variations are to be
introduced to generate the individual NNs, such as the
initial weights, the training algorithms, the training data
etc. It is worth noting that some discretion needs to be
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Fig. 1. Modelling and optimisation of material properties.
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