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Abstract

A stable self-learning PID ðproportionalþ integralþ derivativeÞ control scheme for multivariable nonlinear systems with unknown

dynamics is proposed in this paper. The control scheme is based on a neural network (NN) model of the plant. The NN model is adapted

by an extended Kalman filter (EKF) to learn plant dynamic change, while the PID control parameters are adapted by the Lyapunov

method to minimize squared tracking error. Therefore, the model output is guaranteed to converge to the desired trajectory

asymptotically, and the plant output also tracks the desired trajectory due to model adaptation. The proposed scheme is evaluated by

applying it to a simulated multivariable continuous stirred tank reactor (CSTR). The self-learning PID controller is also compared with a

fixed parameter PID controller for a single-input single-output CSTR and the superiority of the self-learning PID is demonstrated.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that PID ðproportionalþ integralþ
derivativeÞ controllers have dominated industrial control
applications for a half of century, although there has been
considerable research interest in the implementation of
advanced controllers. This is due to the fact that the PID
control has a simple structure that is easily understood by
field engineers and is robust against disturbance and system
uncertainty. As most of the industrial processes demon-
strate nonlinearity in the system dynamics in a wide
operating range, different self-tuning PID control strategies
have been investigated in the past two decades.

Relay feedback is a simple and reliable test that keeps the
process output under closed-loop control and makes it
close to the operating point. Åstrom and Hagglund (1984)
combined the strengths of both PID and relay control and
invented the relay auto-tuner for a single-input single-
output (SISO) PID controller. The tuner has been widely
and successfully applied in industry, and further research

to improve this technique has followed (Hang, Astrom, &
Ho, 1993; Ho, Hong, Hansson, Hjalmarsson, & Deng,
2003; Park, Sung, & Lee, 1997). A tutorial given by Hang,
Astrom, and Wang (2002) outlined the recent develop-
ments in this aspect. Some other techniques have also been
used in developing auto-tuning PID controllers for SISO
systems, such as the gain and phase margin-based method
(Ho, Hang, & Cao, 1995). In addition, Kim and Han
(2006) applied a robust PID-like neuro-fuzzy controller to
induction motor servo drive systems. Tavakoli, Griffin, and
Fleming (2006) presented tuning of decentralized PID
controllers for TITO processes. Gyongy and Clarke (2006)
described automatic tuning and adaptation of a PID
controller.
Many industrial processes are inherently multivariable in

nature and need multivariable control. Multivariable auto-
tuning PID controllers have been in development for the
past two decades. The early work includes a method
for tuning the integral part of the multivariable PID
controller developed by Davidson (1976). Pentinnen and
Koivo (1980) proposed a method for tuning the P and I

parts of the multivariable PID controller. The limitation of
these methods is that some experimental and graphical
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procedures are required, which can be rather time
consuming. Therefore, such methods are not suitable for
on-line tuning. Zgorzelski, Unbehauen, and Niederlinski
(1990), Loh, Hang, Quek, and Vasnani (1993) and Zhuang
and Atherton (1994) developed multivariable PID con-
trollers based on the method by Åstrom and Hagglund
(1984). For the early multivariable PID control, Koivo and
Tanttu (1991) gave a survey for its tuning techniques.
These techniques primarily aim to decouple the plant at
certain frequencies. Decentralized PID control structure
has also been targeted with auto-tuning method developed
by Halevi, Palmor, and Efrati (1997) and Palmor, Halevi,
and Krasney (1993).

Methods based on on-line parameter estimation have
also been proposed for the automatic tuning of PID
regulators. Some authors proposed auto-tuning regulators
based on minimum variance, pole placement or linear
quadratic Gaussian (LQG) design methods. Gawthrop
(1986) and Radke and Isermann (1987) proposed auto-
tuning PID using adaptive parameter estimation methods.
Hang and his co-workers have proposed auto-tuning PID
regulators using alternative methods, including a knowl-
edge-based PID auto-tuner (Lee, Hang, Ho, & Yue, 1993).
Based on the method given in Nishikawa, Sannomya,
Ohta, and Tanaka (1984), Ruano, Fleming, and Jones
(1992) proposed a connectionist approach to PID auto-
tuning, which used integral measures of the step response
as the input to neural networks to determine the required
PID parameter values. However, most of these methods
are for SISO systems.

In this paper, a self-learning PID control for multi-
variable time varying systems is proposed based on a NN
model of the plant. The NN model is on-line and updated
with the EKF algorithm to learn plant dynamics change,
while the PID controller parameters are updated based on
the plant output predictions by the model. The proposed
auto-tuning algorithm is operated iteratively and is
developed using the Lyapunov method. Hence, the
convergence of the tracking control is guaranteed. The
proposed auto-tuning PID controller is evaluated by
applying it to a simulated two-input two-output CSTR
process. In order to compare the auto-tuning PID
controller with a fixed parameter PID controller, a
simulated SISO CSTR is used as a test bench. The
superiority of the developed method over the fixed
parameter PID is clearly shown.

2. Adaptive neural network model

2.1. The NN model

For a multivariable nonlinear sampled-data system
represented by the following NARX (nonlinear auto-
regressive with exogenous inputs) model,

yðkÞ ¼ g½uðk � d � 1Þ; . . . ; uðk � d � nuÞ; yðk � 1Þ; . . . ,

yðk � nyÞ� þ eðkÞ, ð1Þ

where u 2 Rm and y 2 Rp are the sampled process input
and output vector, nu and ny are the input order and output
order, respectively, d denotes the process transmission
delay and e is a noise vector, a multi-layer perceptron
(MLP) network of the following form can be used to model
the system.

ŷðkÞ ¼ ĝ½uðk � d � 1Þ; . . . ; uðk � d � nuÞ; yðk � 1Þ; . . . ,

yðk � nyÞ�, ð2Þ

where ŷ 2 Rp is the estimated output by the NN model and
ĝð�Þ is an approximated nonlinear function of gð�Þ. It has
been previously proved (Funahashi, 1989) that if gð�Þ is
sufficiently smooth, a network model can approximate it to
any pre-specified accuracy, provided with enough numbers
of hidden layer nodes. The commonly used structure of
MLP network with one hidden layer of q neurons is
adopted,

ŷðkÞ ¼W y
oðkÞ

1

� �
; oðkÞ ¼ f ½zðkÞ�; zðkÞ ¼W h

xðkÞ

1

� �
,

(3)

where xðkÞ 2 Rn is the network input vector and is given,
according to (1), by

xðkÞ ¼ ½uðk � d � 1ÞT; . . . ; uðk � d � nuÞ
T; yðk � 1ÞT; . . . ,

yðk � nyÞ
T
�T, ð4Þ

where n ¼ mnu þ pny, oðkÞ 2 Rq is the hidden layer output,
W h 2 Rq�ðnþ1Þ and W y 2 Rp�ðqþ1Þ are the weight matrices
in the hidden and output layers, respectively, f ð:Þ is the
nonlinear activation function in the hidden layer, for which
the sigmoid activation function is used in this study,

oðkÞ ¼
1

1þ e�zðkÞ
.

2.2. EKF training algorithm

The extended Kalman filter (EKF) is chosen for the
MLP network on-line updating in this study because this
algorithm is much faster than the commonly used back-
propagation algorithm. Back-propagation algorithm is the
gradient descent method used for nonlinear optimization.
The EKF algorithm applies the KF to the linearized
nonlinear optimization problem. As the linear optimization
using the KF is much faster compared with the nonlinear
optimization using the back-propagation method, the EKF
is adopted here in this research for MLP model updating.
There are two conditions for the EKF to be applied. One

is that the process dynamics must be differentiable, or
smooth, so that the dynamics can be linearized around the
current operating point. The second condition is that all
relevant input/output data should be measurable, and
therefore are available for use by the EKF. Both conditions
are satisfied in the updating of the MLP model and for the
PID controller. The model parameters to be trained are
weight matrices W h and W y. To enable these parameter
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