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In this paper, a rapid calibration procedure for identifying the parameters of a dynamic model of

batteries for use in automotive applications is described. The dynamic model is a phenomenological

model based on an equivalent circuit model with varying parameters that are linear spline functions of

the state of charge (SoC). The model identification process is done in a layered fashion: a two step

optimization process using a genetic algorithm (GA) is used to optimize the parameters of the model

over an experimental data set that encompasses the operating conditions of interest for the batteries.

The level of accuracy obtained with this procedure is comparable to other black/gray box techniques,

while requiring very little calibration effort. The process has been applied to both lithium ion and NiMH

chemistries with good results. An extension of this technique to identify a model with both SoC and

temperature dependence is discussed.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most attractive technologies for improving fuel
economy in the automotive industry is the use of hybrid
powertrain technology, where a vehicle is driven by two power
sources. Currently, the dominant form of this technology is
charge-sustaining hybrid electric vehicles (HEV), where the two
power sources are an internal combustion engine (ICE) and an
electrical machine (EM). Under strong consideration, and likely to
emerge in the market over the next couple of years are the Plug-in
Hybrids (PHEV) which are hybrids capable of operating in both
charge-depleting modes and charge-sustaining modes. Central to
these hybrid implementation forms is the battery pack. Due to
cost, weight and packaging constraints, current production
battery packs are made with nickel-metal hydride (NiMH) cells.
But the automotive industry is fast evolving to lithium ion or
lithium ion polymer chemistries, which has more favorable power
and energy densities.

The central challenge to any P/HEV development is the design
of the vehicle energy management system (EMS). A properly
designed EMS allows the EM to supplement the ICE or the ICE to
charge the battery to improve ICE efficiency, allows regenerative
braking whenever possible, allows the EM to assist in drivability
under load demand, and more. To do so, the EMS must have a well

designed battery management system (BMS) that tracks the state
of charge (SoC) and state of health (SoH) of the battery pack as
feedback variables to the EMS as well as perform maintenance
actions such as cell balancing and cooling to provide maximum
lifetime for the pack. The SoC estimation problem is particularly
challenging because of the length of time these vehicles are in
service under the charge-sustaining mode where the battery pack
operates with high efficiency and slow aging. However, when
operated in this mode for an extended time, noisy current
integration deviates from the true power consumption making
direct measurement of SoC unreliable (see Pang, Farrell, Du, &
Barth, 2001; Serrao, Chehab, Guezennec, & Rizzoni, 2005;
Verbrugge & Tate, 2004 for more on the SoC estimation problem).
Moreover, with regard to state of health, the battery undergoes an
aging process, which depends on many factors (temperatures,
severity of use in terms of both current magnitude and depth of
discharge, and so on), rendering the relationship to battery health
difficult to characterize. Furthermore, whatever solution one uses
to solve these problems must be readily implementable onboard,
typically limited to standard onboard measurements.

Many physically based and ad hoc algorithms have been
proposed in the literature (and some are implemented in
production) for general modeling, SoC estimation, and other
related problems (see Piller, Perrin, & Jossen, 2001 for a summary
of basic algorithms used for SoC estimation). Examples of these
algorithms include the standard current integration and open
circuit voltage measurement to more advanced techniques such as
sliding mode observers (Kim, 2006), fuzzy logic (Malkhandi,
2006), and Kalman filters (Plett, 2004). When the SoC problem is
solved, the SoH problem becomes more tractable because SoC
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trajectory plays a role in determining the battery’s SoH. For
example the dual-Kalman filter idea used in Plett (2004) is very
promising. Many of these algorithms are model-based techniques
that require a control-oriented model that is simple enough but
can also describe the input to output (I–V) dynamic character-
istics of the battery with sufficient accuracy. Therefore being able
to find a control-oriented model of a battery is an important
problem in P/HEV development. Furthermore, these models are
also used for vehicle simulation for design and optimization
studies and, very importantly, for developing and calibrating
energy management strategies and controllers.

Several types of models are often used to capture input to
output behaviors. Electrochemical models are based on the
battery physical construction and chemistry. These models can
be extremely accurate in predicting the output behavior of the
battery because they characterize the fundamental mechanism of
battery power generation. Such models typically contain systems
of coupled partial differential equations that can be cumbersome
to simulate/solve and are generally not suitable for control design
(see Gomadam, Weidner, Dougal, & White, 2002; Ledovskikh,
Verbitskiy, Ayeb, & Notten, 2003; Newman, Thomas, Hafezi, &
Wheeler, 2003 for example models). Furthermore, due to the
proprietary nature of most readily available batteries, the
parameters needed to fit the model are often unavailable. The
other approach that is often adopted as a compromise between
accuracy and usability is the equivalent circuit-based model. Such
models use a combination of SoC dependent voltage source,
resistors, capacitors, and possibly nonlinear elements such as the
Warburg impedance to approximate the underlying dynamics.
While not as accurate as the electrochemical models, these
models are often much simpler in structure thus making them
suitable for onboard implementation. When operating conditions
are restricted (i.e. operating in a certain range of temperature and
SoC), the inaccuracy in these models can be less than 5%, which
when treated properly can produce usable results for vehicle
energy management. Because a physical analogy exists between
the components used for the equivalent circuit model and the
actual battery, this class of model is often called gray box. Some
black box type models (i.e. those that simply fit input to output
behavior without any physical analogy) have also been tried with
success as well (for example neural networks models as seen in
Chan, Lo, & Shen, 2000).

This paper focuses on the identification of an equivalent
circuit-based model. Because the battery dynamics are complex,
the challenge for such a model is that it must adequately describe
the battery dynamic behavior for a range of operating conditions.
As previous research has noted (Barsoukov & Macdonald, 2005),
the static and dynamic behavior of typical batteries for these
applications vary with current direction, SoC and temperature.
Therefore a single equivalent circuit model cannot describe the
battery operation over a large range of SoC and temperature. A
solution to this problem is to schedule the model parameters
based on the operating condition. Typically, the battery will be
exercised in a restricted region of operating condition, leading to
the identification of a constant model based on the resulting data
set. By repeating the process over the operating region of interest,
one can compose a model that can emulate the battery behavior
in a boarder context while still retaining the basic equivalent
circuit structure. If no nonlinear elements are used in the dynamic
part of the model, the composite model is a linear parameter
varying (LPV) model (for references on LPV systems see Lim, 1999;
Shamma & Athans, 1992) whose coefficients are piecewise
constant functions of SoC and temperature. The difficulty with
such a model is that because the coefficient functions are
inherently discontinuous at the zone boundaries, care must be
taken to prevent undesirable transition effects when simulating

with noisy current measurements. Furthermore, the experiments
(and subsequent parameter identification) required to calibrate
the model parameters are typically extensive and tedious to
perform.

In this paper, it will be shown that an LPV model based on an
RC circuit network structure whose coefficients are linear splines
(continuous piecewise linear functions) can also model batteries
with good accuracy for use in automotive applications. The
inherent continuity property in the coefficients of the model
makes it a desirable alternative to the zone-based models. The
other properties of the linear spline functions make the model
flexible and the identification process systematic. Specifically,
with a properly designed input and identification procedure, the
entire LPV model can be identified quickly and accurately. To
validate the process, model identification is performed for a
lithium ion battery and a NiMH battery, with the lithium ion
battery intended for use in a future PHEV application and the
NiMH currently used in a commercial HEV vehicle. The identified
LPV model is validated in different ways to show the success of
the identification. Because the focus of this study is to show a
proof of concept of the overall identification and model structure,
temperature variation is not considered (i.e. all data are collected
under isothermal conditions). Extension to include temperature is
discussed briefly.

2. Battery model

As noted, typical battery current-to-voltage behavior exhibits
significant dynamical behavior. While the physical sources of the
dynamical behavior are linked to electrochemistry, ion diffusion,
and so forth, requiring partial differential equations to describe
the net electrical dynamical behavior can be, and is often
approximated, by equivalent electrical circuits of reduced order.
The equivalent electrical circuit usually consists of a low-order
linear system (an RC circuit network, for example), an ideal
voltage source whose output is referred to as the open circuit
voltage (OCV), and sometimes includes nonlinear elements such
as Warburg impedances. This electrical-circuit equivalent frame-
work is very popular in the vehicle literature as it is very
amenable to models suitable for vehicle simulation, optimization
and control. Furthermore, the automotive industry is favoring a
model-based approach for vehicle control development, which
inherently requires suitably simplified models, easily identified
and calibrated with physical experiments. These models, while
only approximating the physical behavior of the systems (bat-
teries in this case) are very tractable for control applications.
Therefore the structure selected for the modeling identification
procedure in this paper is an equivalent circuit model.

2.1. Equivalent circuit model

The equivalent electrical-circuit model selected to model the
battery is shown in Fig. 1. The model consists of an internal
resistance, n series connected parallel RC circuits, and an ideal
voltage source. The order of the model is equal to n, since the
voltage to current behavior of each RC circuit can be described by
an independent first-order linear differential equation. To
compensate for the effect of SoC, temperature and current
direction have on the battery behavior, the resistors and
capacitors in this equivalent circuit model are functions of the
current flow direction, SoC and temperature. The OCV is
parameterized as a monotonic function of the SoC and
temperature. Because temperature effect is excluded in this
paper, the parameters do not depend on temperature (all
experiments are conducted at 25 �C).
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