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a  b  s  t  r  a  c  t

A novel molecular collision based Lattice Boltzmann model at mesoscale was extended for

representing hydrodynamics and concentration field of three typical reactive systems: (a)

a  reactive flow in a catalytic pore, (b) a fluid flow in a rectangular channel with a homo-

geneous reaction in the bulk and (c) a fluid flow that passes a reactive cylindrical obstacle

in  a channel. For detailed comparison of the performance of the model, all problems were

solved by conventional reactive Lattice Boltzmann models. Also, three Damkohler numbers

including advection-based and diffusion-based were derived using dimensional analysis.

For  the numerical validations, the results of collision model showed a good agreement with

finite  element method and demonstrated the ability of the proposed model for capturing

different reaction problems especially heterogeneous reactions.

©  2018 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1.  Introduction

Reactive flows are omnipresent in many academic and industrial

researches such as bioengineering (Adam et al., 2012; Bornscheuer

et al., 2012), fuel cell (Proietti et al., 2011), hydrogen generation devices

(Karunadasa et al., 2010), combustion (Yamamoto et al., 2002), etc.

Therefore, several authors have conducted numerical studies on reac-

tion and relevant issues (Danish et al., 2008; Li Puma and Yue, 2003;

Yamamoto et al., 2010; Zheng et al., 2013). Numerical models for reac-

tion problems can summarized into four major categories: macroscopic

(Eymard et al., 2010; Ten Thije Boonkkamp and Anthonissen, 2011),

mesoscopic (Li et al., 2015), microscopic (Levchenko et al., 2010) and

multiscale models (Hellander et al., 2012). Microscopic methods such as

molecular dynamics investigate the interactions between single atoms

and molecules. Therefore, because of computational cost limitations,

studies about hydrodynamics and transport of species using micro-

scopic methods are restricted to smaller ranges of time and space

compared to other categories. On the other hand, conventional numer-
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ical methods at the macro scale, such as finite volume (FV), finite

element (FE) and finite difference (FD), which are implicit solvers of dis-

cretized Navier–Stokes equations become complicated when applied to

the reactive processes. An important reason is that under practical con-

ditions, reactions usually occur in complex domains with liquid–solid

or vapor–solid interfaces and complex boundary conditions, so the

solver needs to solve many partial differential equations including

momentum, energy, and concentration equations. Moreover, due to

continuum nature of these schemes, it is difficult to accurately capture

gas–liquid–solid interfaces and related parameters.

Lattice Boltzmann method (LBM) is a mesoscopic method and a

powerful alternative tool for physical and physicochemical investiga-

tion of reactive systems. In addition, LBM is an efficient method for

momentum, energy and mass transport analysis in simple and com-

plicated geometries (He et al., 1997). Due to the kinetic background of

LBM, it can easily deal with complicated geometries and boundary con-

ditions (He et al., 1998; Peng, 2013). Consequently, there are many works

published based on LBM in porous media (Chen et al., 2015; Falcucci
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et al. 2017; Guo and Zhao, 2005; Sullivan et al., 2005; Tong et al., 2014;

Xin et al., 2013; Yoshino and Inamuro, 2003; Zhao et al., 2010). Fur-

thermore, LBM is an explicit approach with high capability of parallel

computing which is the major advantage of this method in compari-

son with the conventional Navier–Stokes solvers. These features of this

method cause tendency to the use of LBM in reactive flow problems in

complex structures that was reviewed by Kang et al. (2010) and other

applications in complex flows studied by Aidun et al. (2010).

One of the first efforts in the simulation of reactive systems with

LBM was performed (Ponce Dawson et al., 1993) that implemented

Lattice Boltzmann technique to simulate diffusive systems with homo-

geneous reactions. (Qian and Orszag, 1995) utilized LBM to study

dynamics of a special kind of pattern formation in diffusion–reaction

systems. He et al. (2000) proposed a model for simulation of

diffusion–convection problems coupled with surface reaction. Succi

and Gabrielli (2001) accomplished a study of hydro-chemical phe-

nomena in catalytic devices. Kang et al. (2006a) developed a general

multicomponent pore scale LBM for simulating reactive transport

in porous media. An LBM based model was constructed by Kamali

et al. (2012) to reproduce a one-dimensional simulation of the

Fischer–Tropsch reactor. Chen et al. (2013) investigated multiphase flow

with heat transfer, dissolution, precipcitation and surface chemical

reaction. Li et al. (2014) used an LBM based model to simulate the mul-

ticomponent flow and heat transfer with catalytic reactions. A higher

order accuracy LBM model was employed by Zhang and Yan (2014)

for bimolecular autocatalytic diffusion–reaction systems. Simulation of

the geochemical reactive transport in fractured reservoirs was carried

out by Tian et al. (2016).

For the simulation of homogeneous reactions coupled with fluid

flow and studying physical and physicochemical parameters of a sys-

tem, most of the reaction models used a source term in mass transport

equation representing chemical reaction rate (Chen et al., 2014; Kang

et al., 2007; Yamamoto et al., 2005). This source term originates from

Arrhenius model that is a macroscopic description of reaction rate

imported into mesoscopic mass transport equation of LBM which is

not as accurate as using a mesoscopic approach. However, to the best

of our knowledge, there are a few attempts that did not use a macro-

scopic approach for the reaction computing. Mishra and De (2013)

established a stochastic kinetic Monte Carlo (MC) technique for the

simulation of homogeneous chemical reaction. In their work, a micro-

scopic reaction simulator was coupled with LBM which is a mesoscopic

solver for hydrodynamics and scalar transport field. The capability of

the proposed model was shown in solving a typical problem with a

laminar flow in a 2-D rectangular domain where an elementary chem-

ical reaction takes place in a square block in the middle. The model

showed a good performance but it should be noted that fluctuations

were observed in the prediction of species distribution in the reac-

tive sites essentially arised from the stochastic nature of Monte Carlo

scheme. In addition, computational time of MC–LBM model obviously

increases compared with the conventional reactive models. In another

study, Bresolin and Oliveira (2012) executed a fully mesoscopic model

based on reaction kinetic theories to investigate 1-D diffusion–reaction

systems. The presented model was evaluated with a binary diffusion

in a cylindrical pore with a first-order homogeneous chemical reac-

tion and results demonstrated a good agreement with the analytical

solution.

The objective of the present paper is to extend the mesoscopic algo-

rithm for the homogeneous chemical reaction modeling presented by

Bresolin and Oliveira (2012) in order to investigate two-dimensional

advection–diffusion–reaction problems that are very pervasive in reac-

tion engineering. Also, to examine the capability of this model in other

kinds of reactions, the developed model was used to simulate hetero-

geneous reactions. To illustrate the ability of the methodology, three

different cases were studied. In case (a), a reactive diluted flow in a

catalytic pore was examined in which the dominant phenomenon was

molecular diffusion. Case (b) was a laminar solvent flow consisting of

solute species that streams between two parallel plates. An elemen-

tary chemical reaction occur in the bulk and in contrast with case

(a), advection is the paramount phenomenon. Finally, a laminar flow

around a reactive cylindrical obstacle in a rectangular channel was

studied in case (c). For the comparison of the presented model with

the conventional reactive LBM models from the accuracy and compu-

tational point of view, all problems were simulated with conventional

reactive LBM equations. Furthermore, proper dimensionless numbers

have been addressed in each case using dimensional analysis.

The remainder of the paper is arranged as follows. In Section

1, we characterize three cases investigated in this work from the

computational domain, governing equations and boundary condi-

tions viewpoints. In Section 2, dimensionless numbers are derived in

three cases. Also, we describe the details of LBM formulation for fluid

flow, capture hydrodynamics of the system, explain relations between

macroscopic and mesoscopic variables and present two different mod-

els of LBM for reactive solute transport including a new model of

reaction algorithm and its kinetic foundation, collision model, and the

conventional reaction model, i.e. macro model in Section 3. Simulation

results of two LBM models in three cases are presented and discussed

in Section 4. Finally, in Section 5, a brief conclusion of the paper is

presented.

2.  Numerical  method

2.1.  Lattice  Boltzmann  method  for  fluid  flow

Lattice Boltzmann equation is derived from the discretization
of Boltzmann equation. Using statistical mechanics, Boltz-
mann equation can be written as (Wolf-Gladrow, 2000),

∂f

∂t
+

→
� .∇f = Q(f, f ). (1)

where f is the Particle Distribution Function (PDF),
→
� is the

velocity of the particle and Q is the collision term. The term f
refers to the probability of the presence of the particles with
a certain speed, at a given time and position. In order to sim-
plify and linearize the collision term, some theories have been
introduced in the literature. A well-known method is Bhat-
nagar, Gross and Krook (BGK) (Bhatnagar et al., 1954) which
introduced a simplified model for collision operator as:

Q(f, f ) = 1
�

(f eq − f ) (2)

where � is relaxation time and feq is defined as the equilibrium
Particle Distribution Function. Because Lattice Boltzmann
method is extended at the cradle of Lattice-Gas Cellular
Automata (Wolf-Gladrow, 2000), similar to LGCA, lattices with
a specific structure in the LBM are used to discretize Eqs. (1)
and (2) in the sense of velocity and space. Interested readers
are referred to D’Humieres and Lallemand (1987) and Frisch
et al. (1986) for more  details about LGCA method and its appli-
cations. The conventional lattice structure used for isothermal
two-dimensional problem for the velocity vectors is a two-
dimensional 9-speed model (D2Q9) that has the form,

→
e˛ =

{
(0, 0)  ̨ = 0

c (cos [(  ̨ − 1)�/2], sin [(  ̨ − 1)�/2] )  ̨ = 1 − 4√
2 c (cos [(  ̨ − 5)�/2+�/4], sin [(  ̨ − 5)�/2+�/4] )  ̨ = 5 − 8

(3)

The term c is defined as �x
�t which is supposed to be 1 in

this implementation. As mentioned, f is a function of particles

speed, so in Eq. (1), the velocity can be replaced by
→
e˛ which is

also a function of the location of particles. As a result:

f (
→
� ,  x, t) → f˛(x, t) (4)

The next important step is to relate the intangible meso-
scopic probabilities to more  familiar macroscopic expressions
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