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The final step in lignocellulose enzymatic saccharification is the cellobiose conversion to

glucose by �-glucosidases (BG). In this work, a valid kinetic model to describe cellobiose

degradation for an industrial mixture of BG enzymes present in Aspergillus fumigatus is

selected. Firstly, the enzyme mixture was characterised in terms of protein content and

enzymatic activity on p-NPG (1326 U mLpreparation
−1), determining the molecular weight of

the  only BG activity band observed in zymograms by SDS-PAGE and MALDI-TOF: 94 kDa.

Subsequently, to select the correct kinetic model for the enzymatic hydrolysis of cellobiose,

a  combined strategy was performed: Firstly, non-linear regressions were applied to initial

hydrolysis rate data for different enzyme concentrations and initial substrate and product

concentrations, observing inhibition by cellobiose and glucose. Secondly, the optimal kinetic

model was discriminated by a coupled non-linear regression-DOE numerical integration

approach, by fitting several possible kinetic models involving different product inhibition

mechanisms to progress curve data from runs at various initial substrate concentrations

and  temperatures. The best kinetic model involves non-competitive substrate inhibition

and product competitive inhibition with two binding sites for glucose.

© 2018 Published by Elsevier B.V. on behalf of Institution of Chemical Engineers.

1.  Introduction

In the years to come, biorefinery processes and products will be of

utmost importance, being a more environmentally-friendly and renew-

able alternative or complement to the usual counterparts derived from

petroleum. One of the best-known processes in biorefineries is the pro-

duction of ethanol, widely used as a fuel additive (Choi et al., 2015).

In 2015, 86 million tons of bioethanol from starch or sugar sources

were produced (first generation bioethanol or 1GBE). To increase

bioethanol sustainability and avoid interaction with food markets, lig-

nocellulosic biomass feedstocks are envisaged as a more abundant

and convenient raw material for bioethanol processing (second gen-

eration bioethanol or 2GBE). To this end, lignocellulosic biomass is

pretreated, hydrolyzed with acids and/or enzymes and fermented with
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yeasts (Aditiya et al., 2016). The enzymatic saccharification step is key

to achieve large amounts of economically feasible 2GBE (Gupta and

Verma, 2015; Hasunuma et al., 2013). Hydrolysis releases glucose and

other soluble sugars from celluloseby the action of endoglucanases

(EDG), exoglucanases (EXG), �-glucosidases (BG) and other auxiliary

enzymes (Hasunuma et al., 2013). Cellulose is depolymerised by EDG

and EXG into cellobiose and other cello-oligosaccharides, which are

substrates for BG, that catalyses their subsequent transformation into

glucose (Singh et al., 2015).

BG acts on the hydrolysis of glycosidic bonds, which produces

the release of nonreducing terminal glucosyl residues from glycoside

or oligosaccharide molecules: thus, BG is active on many different

substrates where this type of bond is present, including cellobiose,

glucosyl ceramide, salicin or laminaribiose (Ketudat Cairns and Esen,

2010; Singh et al., 2015). Therefore, these enzymes arepresent in all
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Nomenclature

2GBE Second generation bio-ethanol
AA Auxiliary activities
AIC Akaike’s information criterion
ASI Acompetitive substrate inhibition
BG �-glucosidase enzyme
BPI Competitive by-product inhibition
BSA Bovine serum albumina
CE Enzyme concentration (g L−1)
CP Product concentration (glucose) (mol L−1)
CS Substrate concentration (cellobiose) (mol L−1)
CAZy Carbohydrate-active enzymes
CE Carbohydrate esterase enzymes
CLD Chain length distribution
CPI Competitive product inhibition
Ekcat Activation energy of the catalytic constant

(J mol−1)
EDG Endoglucanase enzyme
EXG Exoglucanase enzyme
F Fischer’s statistical parameter
GH Glycoside hydrolase enzyme
GT Glycoside transferase enzyme
HPLC High performance liquid chromatography
kcat Catalytic constant (mol min−1 gE

−1)
kcat0 Preexponential factor of the catalytic constant

(mol min−1 gE
−1)

Ki A competitive substrate inhibition constant
(mol L−1)

KM Substrate affinity constant (mol L−1)
KNC Non-competitive product inhibition (mol L−1)
KP Competitive product inhibition constant

(mol L−1)
KX Xylose competitive product inhibition constant

(mol L−1)
M-M  Michaelis–Menten kinetic model
N Number of experimental data
NPI Non competitive product inhibition
P Number of parameter evaluated on kinetic

model
P1 Empirical parameters of experimental data

adjusting (numerator)
P2 Empirical parameters of experimental data

adjusting (denominator)
PAGE Polyacrylamide gel electrophoresis
PL Polysaccharide lyase enzyme
pNPG 4-Nitrophenyl �-d-glucopyranoside
r Reaction rate (mol L−1 min−1)
r0 Initial reaction rate (mol L−1·min−1)
R Ideal gas constant (8.314 J K−1 mol−1)
RP Glucose production rate (mol L−1 min−1)
RS Cellobiose hydrolysis rate (mol L−1 min−1)
RID Refraction index detector
RMSE Residual mean square error
SDS Sodium dodecyl sulphate
SQR Sum of quadratic residues
SSQ Sum of squares
T Temperature (K)
VE Percentage of variation explained
vmax Maximum reaction rate (mol min−1 L−1)
XC Conversion of cellobiose into glucose
�l Heteroscedasticity parameter for VE determi-

nation

domains of living organisms, comprising Archaea, Eubacteria and

Eukaryotes, in which they have proven an enormous variety of func-

tions (Ketudat Cairns and Esen, 2010). According to the role developed

by the enzymes involved in the carbohydrate polymer decomposition, a

Carbohydrate-Active Enzymes database was elaborated in 1998, named

CAZy (Cantarel et al., 2009), which classifies the different involved

enzymes in five activities: glycoside hydrolases (GH), glycoside trans-

ferases (GT), polysaccharide lyases (PL), carbohydrate esterases (CE),

and auxiliary activities (AA) (Cantarel et al., 2009). BGs, responsible for

cellobiose hydrolysis, are classified as glycoside hydrolysis enzymes in

the clan GHA, which contains families with similar conserved catalytic

amino acids and catalytic domain structure. The most abundant fam-

ily in BGs is GH1, yet they are also included in families GH5 and GH30

(Singh et al., 2015).

The importance of BG action in cellulose saccharification is notable

both from the technical and economic viewpoints: these enzymes yield

glucose from cellobiose and low-molecular weight cellooligosaccha-

rides and, on the other side, their technical preparations at industrial

level are 2–4 times more expensive than those with a high endo- and

exo-glucanase activity (as these latter mixtures usually lack adequate

BG activity and needs BG complementation). In this regard, strategies

that are focused on the recycling of the enzymes, either by recycling

the spend solid (Waeonukul et al., 2013) or by using immobilization

techniques that permit a good contact enzyme-substrate and a good

separation of the enzymatic support after operation (Verma et al., 2016,

2013b) are being developed to reduce BG cost in saccharification.

There is still much controversy and research effort regarding kinetic

modelling of the depolymerisation step due to endoglucanases and cel-

lobiohydrolases (Hosseini and Shah, 2011a, 2011b; Jeoh et al., 2017). In

addition, kinetic information on the action of �-glucosidases still lacks

precision, if present, as new BGs less prone to substrate and product

inhibition are sought and proper kinetic modelling, looking for optimal

kinetic models, is not always performed, even in the case of the most

usual �-glucosidases, as those produced by molds of the Trichoderma

genus. This lack of optima kinetic models is due to the mathematical

tools and model discrimination approaches (linearization of non-linear

models or model screening based only on reaction rate, for example).

A robust approach to kinetic modelling for enzyme-driven processes is

suggested by Al-Haque et al. (2012).

Several kinetic models have been proposed in the literature to

explain the catalytic activity of BG enzymes, as compiled in Table 1.

In the first model shown therein, the authors employed an intial rate

approach and a Lineweaver–Burk linear regression. The model did not

fit accurately to experimental data, specially after long experimental

times, but it was proved that BG suffers from product inhibition as

the enzyme has a much higher affinity for the product than for the

substrate: KM is 5.6 mM, Ki is 0.0244 mM (Hong et al., 1981).

Bravo et al. (2001) employed the previous model to fit to the exper-

imental results achieved in the enzymatic hydrolysis of cellobiose by

a commercial BG. Several initial pH values were tested and, whilst fit-

ting one run at a time, very good fits were achieved. However, neither a

relationship between pH and substrate and/or product inhibition nor a

complete model able to reproduce the system kinetics for different pH

values could be established (Bravo et al., 2001).

Corazza et al. (2005) used the enzyme employed by the previ-

ous authors and discriminated, by hybrid neural modelling, among

the six possible combinations of models based on uncompetitive and

noncompetitive substrate inhibition, on one hand, and competitive,

uncompetitive and noncompetitive product inhibition on the other.

They used the initial rate approach, concluding that the best-fitting

models include competitive inhibition by the glucose and noncompet-

itive or acompetitive inhibition by the substrate (Corazza et al., 2005).

Resa and Buckin (2011) used ultrasonic technology to diminish

experimental errorand establish a real-time on-line monitoring of

enzyme reaction on cellobiose. Its enzymatic hydrolysis was carried

out with a commercial BG at 50 ◦C and pH 4.9. In this work, a modi-

fication in the product inhibition pattern was included: a model that

included two enzyme binding sites for glucose, as well as an uncom-

petitive inhibition on cellobiose, were fitted to experimental data.

The best-fitting results have been achieved with the two-binding sites
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