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A comprehensive study of plant decomposition effects is presented for distributed model

predictive control (DMPC) of an integrated process system. Different decompositions are

obtained via community detection and other methods. The closed-loop performance and

computational efficiency of employing various decompositions for DMPC design are evalu-

ated through tracking outputs in different tracking zones corresponding to desired operating

conditions. Different levels of communication and cooperation between local controllers,

levels of system uncertainty, and dynamic optimization platforms are considered. The

results  are analyzed to determine the most suitable method for decomposition of the studied

integrated process.
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1.  Introduction

Model predictive control (MPC) is a well-established advanced
multivariable control strategy, inherently tailored to account
for performance optimality and constraints (Rawlings and
Mayne, 2009). MPC  implements an open-loop optimal control
policy iteratively, by solving a constrained dynamic optimiza-
tion problem at each iteration to obtain a sequence of future
manipulated inputs (Morari and Lee, 1999). The applicability of
MPC  depends on the solvability of the underlying optimization
problem in real time. Therefore, applying centralized model
predictive control (CMPC) to industrial scale process networks
is challenging as it requires solving a large-scale constrained
nonlinear dynamic optimization problem in real time (Lopez-
Negrete et al., 2013; Biegler, 2017). Some attempts have been
made to speed up the dynamic optimization and accelerate

∗ Corresponding author.
E-mail address: daout001@umn.edu (P. Daoutidis).

the CMPC computations (Biegler, 2017; Griffith et al., 2017;
Muller et al., 2017). However, the real time CMPC of large-scale
process networks is still a challenge.

An alternative strategy is to decompose the large-scale
optimization-based control problem into smaller problems.
Following this idea, we can replace the CMPC with a
distributed model predictive control (DMPC) architecture con-
sisting of local controllers with some level of communication
(Camponogara et al., 2002; Mayne, 2014; Patel et al., 2016;
Scattolini, 2009). The system decomposition, i.e. identifying
the optimal number of subsystems and deciding how the
output variables and the manipulated inputs must distribute
among the network of local controllers, is a key factor for
applying DMPC. Research on DMPC in the last decade has
focused mostly on feasibility, optimality, and closed-loop sta-
bility for a given decomposition (Christofides et al., 2011, 2013;
Doan et al., 2011; Dunbar, 2007; Dunbar and Murray, 2006;
Franco et al., 2008; Liu et al., 2010; Stewart et al., 2011; Tippett
and Bao, 2013; Yin and Liu, 2017; Rawlings et al., 2017) which
is usually obtained following the layout of the physical units
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(Stewart et al., 2011; Tippett and Bao, 2013), or according to
material/energy balance subsystems (Christofides et al., 2011).
Until recently, there had been only a few attempts to find
on optimal decomposition, e.g. by solving a multi-objective
mixed integer nonlinear program to optimize performance
(Al-Gherwi et al., 2010), or by employing an open-loop perfor-
mance metric (Motee and Sayyar-Rodsari, 2003).

The system decomposition problem can be viewed in
the context of network theory as the one of identifying
weakly connected subsystems whereby the variables of each
subsystem are strongly connected (Fortunato, 2010; Girvan
and Newman, 2002). Inspired by this perspective, a cluster-
ing approach based on input/output connectivity has been
employed to derive hierarchies of system decompositions (Heo
and Daoutidis, 2016; Heo et al., 2015). Maximization of the
modularity of a suitable graph has also been adopted to iden-
tify optimal distributed architectures (Jogwar and Daoutidis,
2017; Tang and Daoutidis, 2018; Tang et al., 2018a,b). A limited
number of community-based decompositions was evaluated
through closed-loop simulations for state regulation by employ-
ing sequential DMPC (Pourkargar et al., 2017a). The impact
of information sharing between the local controllers of an
iterative DMPC scheme on the state regulation performance
was also examined (Pourkargar et al., 2017b). These studies
in Pourkargar et al. (2017a,b) documented the importance of
the decomposition in achievable closed-loop performance and
computational cost of DMPC. They also established that com-
munity detection based on a system digraph provides a good
compromise between closed-loop performance and cost of
computation. However, the studies were limited in scope, in
that they focused on state regulation around a single operat-
ing point, compared only a limited number of decompositions,
and all computations were based on the use of sequential
quadratic programming (SQP) for the solution of the optimiza-
tion problem.

In this paper, we  present a comprehensive case study
which analyzes the system decomposition impact on out-
put tracking of an integrated process network over a wide
range of operating conditions. Our goal is to assess and iden-
tify the most efficient distributed optimization-based control
strategy, in terms of utilizing the best system decomposi-
tion, the most efficient levels of information sharing and
cooperation between local controllers, and the most effective
dynamic optimization solver. To this end, we apply the iter-
ative DMPC structure introduced in Pourkargar et al. (2017b)
to the benchmark reactor-separator system containing two
continuous stirred tank reactors (CSTRs) and a vapor–liquid
separator. Five system decompositions are obtained through
various methods (decomposition based on the relative time-
average gain and sensitivity array Tang et al., 2018a; Yin
and Liu, 2017, decomposition using a weighted input–output
bipartite graph Tang and Daoutidis, 2018, and decomposi-
tion based on an unweighted digraph Jogwar and Daoutidis,
2017) or by intuition (based on the layout of the physical
units, and material/energy balance subsystems). We  employ
two classes of optimization methods, namely SQP and interior
point optimization (IPOPT) to ensure that the comparison of
the DMPC performance using different decompositions is not
limited to a specific optimization platform. Both these plat-
forms are suitable to solve nonlinear dynamic optimization
problems, while IPOPT is computationally faster compared to
SQP. Also, we  considered different tracking zones to exam-
ine the closed-loop performance of DMPC using the proposed

decompositions, where the term tracking zones refers to dif-
ferent setpoint values for setpoint tracking. In these zones,
the controllers track desired steady state values of the sys-
tem which indicate low, moderate, and high overall conversion
of the feed into the product. The output tracking errors, the
required control actions, and the computation time for the
different architectures are compared over the tracking zones
with and without considering measurement noise effects. The
results are analyzed and evaluated by comparing them to
those obtained by CMPC to identify the most efficient dis-
tributed control architecture.

The rest of the paper is organized as follows. Section 2
presents the mathematical description of the studied class
of nonlinear systems, the CMPC formulation for output track-
ing, and the system representation in the form of decomposed
subsystems for distributed control. In this section, we  also
develop an iterative DMPC formulation for output track-
ing and review recent community-based methods for the
control-oriented optimal decomposition of large-scale sys-
tems. We  then evaluate the impact of the resulting system
decomposition on the computational demand and closed-loop
performance of iterative DMPC for the benchmark reactor-
separator process network in Section 3.

2.  Model  predictive  control

We consider a general class of nonlinear input-affine process
systems defined by the following state space model

ẋ(t) = f (x(t)) + g(x(t)) u(t)

y(t) = h(x(t))
(1)

where x(t) = [x1(t) x2(t) · · · xn(t)]T ∈ R
n denotes the vector of

state variables of the system, y(t) = [y1(t) y2(t) · · · yr(t)]
T ∈ R

r

the vector of outputs, u(t) = [u1(t) u2(t) · · · um(t)]T ∈ R
m the

vector of manipulated inputs, and t is the time. The terms f :
R

n → R
n, g : R

n → R
n×m, and h : R

n → R
r denote smooth non-

linear locally Lipschitz functions. The states of the system are
assumed to be measured at periodic sampling times.

A CMPC architecture can be synthesized to track the
outputs, by solving a single constrained nonlinear dynamic
optimization problem over a predetermined prediction hori-
zon. The underlying optimization problem is formulated
based on the process model of (1) subject to constraints and
input bounds

min
u

∫ tk+N

tk

[
(y − yref )

T
P (y − yref ) + (u − uss)TW (u − uss)

]
dt

s.t. ẋ = f (x) + g(x) u

y(t) = h(x(t))

umin ≤ u ≤ umax

F(x, u, t) ≤ 0

G(x, u, t) = 0

(2)

where tk denotes the kth sampling time and N indicates
the number of sampling times in the prediction horizon. By
considering a constant sampling period, � = tk+1 − tk, for the
entire closed-loop operation, the prediction horizon for solv-
ing the optimization problem at each sampling time is equal

to N�. The vectors of yref (t) = [yref
1 (t) y

ref
2 (t) · · · y

ref
r (t)]

T ∈ R
r,

and uss(t) = [uss
1 (t) uss

2 (t) · · · uss
m (t)]T ∈ R

m are the outputs of
the system and their corresponding steady state manipulated
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