ARTICLE IN PRESS

CHEMICAL ENGINEERING RESEARCH AND DESIGN XXX (2017) XXX-XXX

Contents lists available at ScienceDirect

Chemical Engineering Research and Design

journal homepage: www.elsevier.com/locate/cherd

A model-based approach for the evaluation of new zeolite 13X-based adsorbents for the efficient post-combustion CO₂ capture using P/VSA processes

George N. Nikolaidis, Eustathios S. Kikkinides, Michael C. Georgiadis*

Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

ARTICLE INFO

Article history: Received 3 April 2017 Received in revised form 9 June 2017 Accepted 13 June 2017 Available online xxx

Keywords: PSA/VSA process Adsorbents 13X zeolite CO₂ capture Dynamic optimization

ABSTRACT

This work presents a mathematical modeling framework for the simulation and optimization of pressure/vacuum swing adsorption (P/VSA) processes for post-combustion CO2 capture. A single-stage P/VSA process for CO₂ capture from dry flue gas is considered using new zeolite 13X-based adsorbents resulting from perturbation on the 13X zeolite isotherm. A two-bed six-step P/VSA cycle configuration with light product pressurization is employed in systematic simulation and optimization studies. First a zeolite 13X, the current benchmark commercial adsorbent for CO₂ capture, is considered. Accordingly, the model is used to study and evaluate new zeolite 13X-based adsorbents for more efficient CO₂ capture. The results from systematic comparative simulation studies demonstrate that a modified zeolite 13X-based adsorbent appears to have better process performance compared with the original zeolite 13X. Furthermore, process optimization studies employing the above potential adsorbents are performed to minimize energy consumption for specified minimum requirements in CO2 purity and recovery. The optimization results indicate that the minimum target of 95% in CO₂ purity and 90% in CO₂ recovery is easily met for the P/VSA process under consideration for both potential adsorbents under different operating conditions resulting in different energy requirements and CO₂ productivity.

© 2017 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

Carbon dioxide (CO_2) emissions are considered as a great threat to the environment because they are responsible for 60% of the global warming caused by greenhouse gases (GHGs). Fossil fuels constitute currently the dominant energy source because of their availability and low cost and are expected to retain this dominance during the next decades. Therefore, carbon capture and storage (CCS) from several energy intensive industrial processes will play a critical role in the production of a significant proportion of energy from fossil fuels, enabling reduced GHGs emissions, and improving the security of supply by maintaining a balanced mix of energy sources. The first step in CCS is CO_2 capture at the source and the production of a concentrated stream for pressurization, liquefaction, transportation and storage in potential reservoirs. CO_2 capture is the most expensive part of CCS accounting for 70–80% of the overall CCS cost (Lee and Park, 2015). Currently, there are three main available approaches to capture CO_2 from large scale industrial facilities or power plants: (1) post-combustion capture, (2) pre-combustion capture, and (3) oxy-fuel combustion capture. Post-combustion capture involves the separation and capture of CO_2 from large exhaust sources including coal-fired power plants, cement industries, iron and steel mills and other industrial sectors. Precombustion capture involves first the gasification or reforming of solid, liquid or gaseous fuel into syngas, which is a combustible fluid mixture

E-mail address: mgeorg@auth.gr (M.C. Georgiadis).

Please cite this article in press as: Nikolaidis, G.N., et al., A model-based approach for the evaluation of new zeolite 13X-based adsorbents for the efficient post-combustion CO₂ capture using P/VSA processes. Chem. Eng. Res. Des. (2017), http://dx.doi.org/10.1016/j.cherd.2017.06.016

Abbreviations: CFDM, centered finite difference method; PDAEs, partial differential and algebraic equations; PSA, pressure swing adsorption; P/VSA, pressure vacuum swing adsorption; SLPM, standard liters per minute; TSA, temperature swing adsorption; VSA, vacuum swing adsorption.

^{*} Corresponding author.

http://dx.doi.org/10.1016/j.cherd.2017.06.016

^{0263-8762/© 2017} Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

2

Chemical engineering research and design $\,$ x x x $\,$ (2 0 1 7) $\,$ xxx–xxx

Nomenclature

b ₍₁₎	Dual site Langmuir isotherm parameter of first
b ₍₂₎	Site, 1/Pa Dual-site Langmuir isotherm parameter of sec-
	ond site, 1/Pa
С	Molar concentration of gas phase in bulk gas,
C ⁱⁿ	Molar concentration of gas phase at the inlet of
C	adsorption bed, mol/m ²
Сp	constant pressure, J/(kgK)
cυ	Specific heat capacity of bulk gas referring to constant volume, J/(kg K)
c_p^p	Specific heat capacity of the particle, J/(kgK)
C _{valve}	Gas valve constant
D	Adsorption bed diameter, m
De	Effective diffusivity, m ² /s
D_k	Knudsen diffusivity, m^2/s
D _m	Molecular diffusivity, m^2/s
D _Z F	Energy consumption of the compres-
L	sor/vacuum nump I
F	Molar flow rate, mol/s
k1(1)	Dual-site Langmuir isotherm parameter of first
	site, mol/kg
k ₂₍₁₎	Dual-site Langmuir isotherm parameter of first
	site, 1/K
k ₃₍₁₎	Dual-site Langmuir isotherm parameter of first site, 1/Pa
k ₄₍₁₎	Dual-site Langmuir isotherm parameter of first
	site, K
k ₁₍₂₎	Dual-site Langmuir isotherm parameter of sec- ond site, mol/kg
k ₂₍₂₎	Dual-site Langmuir isotherm parameter of sec-
_	ond site, 1/K
k ₃₍₂₎	Dual-site Langmuir isotherm parameter of sec-
1	ond site, 1/Pa
k ₄₍₂₎	Dual-site Langmuir isotherm parameter of sec- ond site, K
$k_{h,wall}$	Heat transfer coefficient of the bed wall,
-	J/(m ² K s)
	Adsorption bed length, m
IVI VV	Molecular weight, g/mol
N _{comp}	Number of moles of the feed stream of the com-
1 In	pressor/vacuum pump mol
nc	Isentropic compression efficiency of the com-
·(pressor
n_v	Isentropic evacuation efficiency of the vacuum
Ū	pump
Р	Total pressure of bed, Pa
P _{atm}	Atmospheric pressure, Pa
P _{factor,CO2}	2 CO ₂ perturbation factor of the dual-site Lang- muir isotherm parameters
P _{factor.No}	N ₂ perturbation factor of the dual-site Lang-
,	muir isotherm parameters
P _{feed}	Pressure of the feed stream, Pa
P _{in}	Pressure at the inlet of the gas valve, Pa
Pout	Pressure at the outlet of the gas valve, Pa
Pυ	Pressure of the leaving stream of the vacuum
	pump, Pa

	Q	Adsorbed amount per unit mass of adsorbent,	
	• *	mol/kg	
	Q*	Adsorbed amount per unit mass of adsorbent	
		in equilibrium state, mol/kg	
	q_m	Dual-site Langmuir isotherm parameter,	
	D	mol/kg	
	R _{bed}	Adsorption ded radius, m	
	К _р	Particle radius, m	
	R _{pore}	Pore radius, m	
	SP	Stem position of the gas valve	
	t	Time, s	
	t _{Ads}	Time of adsorption step, s	
	t _{Blow}	Time of blowdown step, s	
	t _{Evac}	Time of evacuation step, s	
	t _{cycle}	lotal cycle time step, s	
	t _{CC}	Time of pressurization with light product step,	
1		S	
	t_{PED}	Time of pressure equalization (depressuriza-	
		tion) step, s	
	t_{PER}	Time of pressure equalization (repressuriza-	
		tion) step, s	
	Т	Temperature of the adsorption bed, K	
	T _{feed}	Temperature of the feed stream, K	
	T^{in}	Temperature of the fluid at the inlet of the	
		adsorption bed, K	
	T _{wall}	Temperature of the bed wall, K	
	u	Interstitial velocity, m/s	
	u ^{ın}	Interstitial velocity at the inlet of the adsorption	
		bed, m/s	
	у	Molar fraction in gas phase	
	Z	Axial discretization domain, m	
	Creek let	tars	
	STEEK IEL	Specific heat canacity ratio	
	ү лЦ,	Isosteric heat of adsorption 1/mol	
		Porosity of the adsorption hed	
	c bed	Porosity of the particle	
	ср х	Thermal conductivity of bulk gas I/(mKs)	
1	λ_	Heat axial dispersion coefficient 1/(mKs)	
1	N _Z	Viscosity of hulk gas Pas	
	μ 0	Density of bulk gas, $k\sigma/m^3$	
	o ^p	Density of the particle kg/m^3	
	0 ^S	Adsorbent density kg/m ³	
	רי דיי	Tortuosity factor of the particle	
	°Р	to the purifier	
	Subscrip	ts	
	i	Component	
	Supercerinte		
	n	Particle	
	U		

containing CO_2 . CO_2 is separated from syngas before combustion. The syngas is then burned in a conventional combined-cycle arrangement integrated to the gasification unit (Integrated Gasification Combined Cycle, IGCC) to generate electric power. In oxy-fuel combustion the fuel is burned with oxygen instead of air, to produce a flue gas that consists of primarily CO2. The National Energy Technology Laboratory, under the U.S. Department of Energy, has specified 95% CO₂ purity and 90% CO_2 recovery target levels for the CO_2 capture processes (NETL, 2012). According to the International Energy Agency's roadmap, 20% of the total CO₂ emissions should be removed by CCS by the year 2050

Please cite this article in press as: Nikolaidis, G.N., et al., A model-based approach for the evaluation of new zeolite 13X-based adsorbents for the efficient post-combustion CO₂ capture using P/VSA processes. Chem. Eng. Res. Des. (2017), http://dx.doi.org/10.1016/j.cherd.2017.06.016

р

Download English Version:

https://daneshyari.com/en/article/7006044

Download Persian Version:

https://daneshyari.com/article/7006044

Daneshyari.com