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An iterative linear matrix inequality (LMI) approach for designing multi-input multi-output

(MIMO) PI/PD controller for stable/unstable multivariable processes is proposed in this paper.

For  this purpose, the matrix gains of controller are calculated such that the closed-loop

system be stable, and simultaneously, the infinity norm of the weighted sensitivity function

is  minimized. This problem is mathematically formulated using the well-known bounded

real  lemma (BRL). The matrix inequality of the BRL is nonlinear because of multiplication of

the  variable of Lyapunov equation and gains of controller. To remove this nonlinearity, first

a  solution to the Lyapunov LMI is calculated using some necessary-type LMIs developed

for  this purpose. Then, this solution is substituted in the BRL to arrive at an LMI whose

solution determines the gains of a stabilizing MIMO PI/PD controller which also minimizes

the infinity norm of the weighted sensitivity function. If the resulting controller was not

satisfactory, one can use the proposed iterative algorithm to improve its performance. The

proposed method is used for tuning MIMO PI/PD for four stable/unstable MIMO processes.

©  2018 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1.  Introduction

PIDs are low-order controllers which have been successfully
used for decades to control higher-order processes. The clas-
sical single-input single-output (SISO) PID has three tuning
parameters called proportional, integral and derivative gains.
Since the number of tuning parameters is limited to three in
SISO case, the problem of designing a SISO PID is rather simple
and a wide variety of methods are available for this purpose.
Some of the recently developed methods for SISO PID tuning
are IMC-based PID tuning (Kumar and Sree, 2016), combination
of IMC  and model matching approach for closed-loop shap-
ing (Jin and Liu, 2014), frequency loop-shaping (Grassi et al.,
2001), generalized Kalman–Yakubovich–Popov (KYP) synthesis
(Hara et al., 2006), optimization via multiobjective perfor-
mance criterion (Sahib and Ahmed, 2016), and discrete-time
fractional-order PID tuning based on meta-heuristic optimiza-
tion (Merrikh-Bayat et al., 2015). Also, tuning SISO PID and
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fractional-order PID via LMI approach based on the frequency
sampling method are discussed in Najafizadegan et al. (2017)
and Merrikh-Bayat (2017), respectively, and SISO PID tuning
based on convex–concave optimization is studied in Hast
(Åström et al., 2013). See also Vilanova and Visioli (2006) and
Vilanova and Visioli (2012) for some classical SISO PID tuning
methods.

Multi-input multi-output (MIMO) PID controllers also had
been the subject of many  studies. For example, design-
ing multi-loop PID controllers (Huang and Huang, 2004;
Wang et al., 2007), equivalent transfer function method for
PI/PID controller design (Xiong et al., 2007), the method of
complex/real ratio of the characteristic matrix eigenvalues
(Ruiz-López et al., 2006) and an analytical method for stabi-
lizing MIMO PID synthesis (Gündeş et al., 2007) can be found
in the literature. A summary of some classical methods for
designing MIMO  PID can also be found in Wang et al. (2008).
It should be noted that the problem of designing a MIMO
PID is intrinsically more  complicated than a SISO PID mainly
because in MIMO case the number of variables is drastically
increased by increasing the number of inputs and outputs of
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the process. For example, a standard MIMO  PID used to control
a process with 3 inputs and 3 outputs has 27 tuning param-
eters, which makes the problem more  challenging compared
to SISO case.

Although PIDs constitute more  than 90% of the controllers
used in industry, there are still many  problems where other
controllers lead to considerably better results (Vilanova and
Visioli, 2006). It justifies the continuous effort, especially in the
field of MIMO  PID, to develop more  effective tuning methods
for designing higher performance PIDs. Linear matrix inequal-
ities (LMIs) are used for this purpose in the past years; see
for example (Pradhan and Ghosh, 2015; Boyd et al., 2016; Wu
et al., 2011; Zheng et al., 2002; Lin et al., 2004; Ge et al., 2002).
The big advantage of LMIs is that they are convex, and con-
sequently, can be solved very effectively by using algorithms
like the interior point method in polynomial time. Although
many problems in the field of control theory like stability
analysis (Sabatier et al., 2010), calculating the H∞ norm of a
linear system transfer function (Skogestad and Postlethwaite,
2005, Ch. 12), calculating the upper bound on � (Skogestad and
Postlethwaite, 2005, Ch. 12) and state-feedback control (Farges
et al., 2010; Balochian et al., 2011) can be formulated using
LMIs, many  others are non-convex and cannot be represented
by LMIs. A large effort is made to overcome the non-convexity
of such problems and finding (approximate) solutions using
LMIs. Two well-known methods to transform non-convex and
bilinear matrix inequalities (BMIs) to LMIs are convex–concave
decomposition and linearization method (Tran Dinh et al.,
2012).

To the best knowledge of author, Zheng et al. (2002) is the
first considerable work on tuning MIMO  PIDs via LMI approach.
The basic idea used in Zheng et al. (2002) is to transform the
problem of designing a MIMO  PID to a static output feedback
whose solution via LMI  approach was already known. The
method presented in Lin et al. (2004) for MIMO PID tuning is
intrinsically the same as Zheng et al. (2002) but some of the
restrictions of Zheng et al. (2002) are removed. Another consid-
erable work in the field of MIMO  PID tuning via LMI  approach
is Boyd et al. (2016). In that paper the gains of multivariable
PID are calculated by minimizing the low frequency gain of
open-loop system subject to constraints on infinity norms of
closed-loop transfer functions. The problem under consider-
ation in Boyd et al. (2016) is non-convex and approximate
solutions are obtained by combining a matrix extension of
convex–concave decomposition and the frequency sampling
method. One feature of Boyd et al. (2016), Zheng et al. (2002)
and Lin et al. (2004) is that they are of iterative nature which
means that an initial point is required to begin the search. For
example, in Boyd et al. (2016) the search for the (sub)optimal
solution should begin from a stabilizing solution, which limits
the application of that method. Moreover, the methods pre-
sented in Boyd et al. (2016), Zheng et al. (2002) and Lin et al.
(2004) work based on some sufficient-type conditions where
finding a solution (if one exists) is not guaranteed. On the other
hand, since the method presented in Boyd et al. (2016) does
not rely on state-space equations, it can be applied directly to
systems with time delay.

In the method proposed in this paper for tuning MIMO
PI/PD via LMI  approach two sets of LMIs are generated and
solved. First, a solution to the nonlinear Lyapunov equation
(to achieve closed-loop stability at the presence of a MIMO
PI/PD with unknown parameters in the loop) is obtained based
on some necessary-type LMIs developed for this purpose.
Then the resulting solution is employed in the bounded-real

Fig. 1 – The feedback system with MIMO  PI/PD controller.

Fig. 2 – Representing the MIMO  PI/PD tuning as a weighted
sensitivity problem.

lemma  (BRL) to calculate the parameters of controller such
that the singular values (SVs) of the sensitivity function are
well shaped. If the resulting controller is not satisfactory, the
proposed iterative approach can be used to enhance its per-
formance.

The propounded method has some advantages and disad-
vantages compared to the existing methods for tuning MIMO
PID via LMI approach. One advantage of the proposed method
is that no initial point is required to begin the search for the
gains of controller. Moreover, it can also be applied to both
stable and unstable processes. The main limitation of the pro-
posed method is that it is based on necessary-type LMIs for
closed-loop stability. Hence, similar to Boyd et al. (2016), Zheng
et al. (2002) and Lin et al. (2004) finding a solution is not guaran-
teed. However, the simulation results show that the proposed
necessary LMIs for closed-loop stability very often lead to a
controller with desired performance.

The rest of this paper is organized as follows. The main
results, including the proposed algorithm for tuning MIMO
PI/PD, is presented in Section 2. Four illustrative examples are
presented in Sections 3 and 4 concludes the paper.

2.  Main  results

2.1.  Problem  description

Our aim here is to design the stabilizing multivariable PI/PD
controller C(s) in Fig. 1 which minimizes ‖Wp(s)S(s) ‖ ∞ where
Wp(s) is a (stable and scaler) performance weight, r, e, yp ∈
R

l×1, u ∈ R
m×1, Kp, Ki, Kd ∈ R

m×l are unknown controller gains,
� > 0 is the predetermined time-constant of derivative filter,
and S(s) : = (I + PC)−1PC is the sensitivity function. Without a
considerable loss of generality, P(s) is assumed to be a strictly
proper transfer function matrix, that is lim

s→∞
P(s) = 0.

This problem is equivalent to calculating the unknown
matrices of state-space realization of controller in Fig. 2 such
that firstly the closed-loop system be internally stable, and
secondly the infinity norm of the transfer function matrix
from r to y is minimized. Note that although the problem
is originally defined in the frequency domain, it will be for-



Download	English	Version:

https://daneshyari.com/en/article/7006083

Download	Persian	Version:

https://daneshyari.com/article/7006083

Daneshyari.com

https://daneshyari.com/en/article/7006083
https://daneshyari.com/article/7006083
https://daneshyari.com/

