Accepted Manuscript

Title: Concomitant removal of NO_x and SO_x from a pressurized oxy-fuel combustion process using a direct contact column

Authors: Tefera Zelalem Tumsa, See Hoon Lee, Fredrik Normann, Klas Andersson, Sima Ajdari, Won Yang

PII: DOI: Reference: S0263-8762(17)30653-6 https://doi.org/10.1016/j.cherd.2017.11.035 CHERD 2914

To appear in:

Received date:	12-6-2017
Revised date:	16-11-2017
Accepted date:	20-11-2017

Please cite this article as: Tumsa, Tefera Zelalem, Lee, See Hoon, Normann, Fredrik, Andersson, Klas, Ajdari, Sima, Yang, Won, Concomitant removal of NOx and SOx from a pressurized oxy-fuel combustion process using a direct contact column.Chemical Engineering Research and Design https://doi.org/10.1016/j.cherd.2017.11.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Concomitant removal of NO_x and SO_x from a pressurized oxy-fuel combustion process using a direct contact column

Tefera Zelalem Tumsa^{1,2}, See Hoon Lee³, Fredrik Normann⁴, Klas Andersson⁴, Sima Ajdari⁴, Won Yang^{1,2}[†]

 ¹Green Process and System Engineering, University of Science and Technology (UST), Daejeon, Yuseong-gu, 34113, South Korea
²Korea Institute of Industrial Technology, Cheonan-Si, Chungnam, 331-882, South Korea
³Mineral Resources & Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk, 54896, South Korea
⁴Energy and Environment, Chalmers University of Technology, Cötebore, 41206, Sweden

⁴Energy and Environment, Chalmers University of Technology, Göteborg, 41296, Sweden

Highlights

- The removal efficiency of NO_x and SO_x depends on pressure.
- Pressurization enhances gas-phase oxidation of NO and the removal efficiency.
- The effects of recycle and liquid-to-gas flow ratio were investigated.
- N-S specious interactions in the liquid phase facilitate the removal of NO_x and SO_x.

Abstract

The simultaneous removal of NO_x and SO_x using a direct contact column has potential for efficient treatment of the flue gases arising from pressurized oxy-fuel combustion. This study focuses on a parametric analysis of the efficiency of NO_x and SO_x removal from the flue gas of an oxy-fuel combustion process using an Aspen Plus direct contact column model. The chemistry implemented in this model reflects the state-of-the-art NO_x and SO_x reaction mechanisms, with particular emphasis on the liquid-phase chemistry, including pH-dependency. The effects of pressure, water flow rate, and recycle ratio on the removal efficiencies of NO_x and SO_x were evaluated. The evaluation was conducted based on the base case pressurized (15 bar) flue gas with a feed rate of 120 kg/s and inlet temperature of 40 °C

Download English Version:

https://daneshyari.com/en/article/7006089

Download Persian Version:

https://daneshyari.com/article/7006089

Daneshyari.com