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A challenging problem in the synthesis and design of chemical processes consists of deal-
ing with hybrid models involving process simulators and explicit constraints. Some unit
operations in modular process simulators are slightly noisy or require large CPU times to
converge. In this work, this problem is addressed by combining process simulators and
surrogate models. We have replaced some unit operations, which cannot be used directly
with a gradient-based optimization, by surrogate models based on Kriging interpolation.
To increase the robustness of the resulting optimization model, we perform a degree of
freedom analysis and aggregate (or disaggregate) parts of the model to reduce the number
of independent variables of the Kriging surrogate models (KSMs). Thus, the final model is
composed of KSMs, unit operations (maintained in the process simulator) and also explicit
equations.

The optimization of the well-known vinyl chloride monomer (VCM) production process
is performed to test the proposed approach. The effect of the heat integration is also stud-
ied. In addition, the economic feasibility of the optimized process is calculated assuming
uncertainty in raw material and product prices.

© 2018 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1. Introduction

Methodologies for the synthesis of chemical processes can be classi-
fied into two different categories: sequential-conceptual methods and
superstructure optimization-based methods.

Sequential methods follow a natural hierarchy between the engi-
neering decisions to obtain a chemical process flowsheet (Douglas,
1985, 1988). This approach is commonly used because the original
problem is divided into a set of sub-problems that reduce the com-
plexity of the initial problem. However, due to its sequential nature,
this approach cannot guarantee an optimal solution since it ignores
the different trade-offs between the various objectives of the prior
stages.

Superstructure optimization-based methods consider the com-
plete network which is composed of all the unit operations, their
connections, and other constraints (Grossmann, 1985; Yeomans and
Grossmann, 1999). The solution of the mathematical model specifies
which of the initial units and connections are kept in the optimal
structure. These methods are used because they offer a simultane-

* Corresponding author.
E-mail address: caballer@ua.es (J.A. Caballero).
https://doi.org/10.1016/j.cherd.2018.02.032

ous optimization of the process structure and the operating conditions.
However, superstructure optimization-based methods are complex to
solve due to the resulting models, usually large-scale non-convex
mixed-integer nonlinear programs (MINLP). The general algebraic form
of these MINLP optimization problems is shown in Eq. (1).

min - f (x,y)
st h(x,y)=0 (1)
gxy) =<0

x e R, y e {0,1}

where f(x,y) is the objective function (e.g., economic, environmental,
etc.); h(x,y) are the equations that describe the behavior of the sys-
tem (e.g., mass and energy balances, reaction rates, etc.); and g(x,y)
are inequality constraints that define process specifications (e.g., prod-
uct purities, maximum temperature allowed, etc.). The real n-vector
x represents the continuous independent variables, and the t-vector y
represents the discrete independent variables.
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When a sequential-modular process simulator is used as ablack box
to compute the objective function and/or the equations that describe
the behavior of the system (equality constraints in the previous MINLP
problem), different approaches can be employed to solve the result-
ing optimization problem. We can try to address the problem directly
by using commercial derivative-based solvers (e.g., DICOPT, ALPHAECP,
SBB...) or metaheuristic algorithms (e.g., genetic algorithms or particle
swarm optimization algorithms). However, some important drawbacks
arise with both paths.

On the one hand, when mathematical programming solvers are
used, the following challenges arise. First, due to the nonlinearities and
non-convexities inherent to some unit operations and thermodynamic
models, these methods do not guarantee a global solution and can be
easily stuck in local solutions. Moreover, the solution depends very sen-
sitively on initial values. However, what is much more important is the
fact that the objective function and/or the set of constraints are ana-
lytically intractable (discontinuous, non-differentiable, and inherently
noisy). Hence, derivatives of the objective and/or constraint functions
with respect to the independent variables must be calculated by numer-
ical differentiation (which limits the accuracy and effectiveness of such
solvers).

Derivatives calculated by perturbation can be very expensive to
compute, and even in the case in which the CPU time is not excessive,
some unit operations introduce numerical noise. Thus, an accurate
derivative cannot be obtained. Of course, all these models are perfectly
valid for simulation purposes, but even relatively small differences in
two instances — completely negligible in any simulation - prevent the
calculation of accurate derivatives (a detailed discussion can be found
in Caballero and Grossmann, 2008).

On the other hand, metaheuristic techniques (which belong to a
class of optimization strategies that does not require gradient informa-
tion, i.e., derivative-free optimization (DFO) methods) seem to be well
suited to simulation-based optimization when sequential-modular
simulators are used. This is because they only require the values of
the objective function. Of course, there are significant disadvantages
of not having derivative information. We cannot expect that the per-
formance of DFO methods matches those of derivative-based methods.
In particular, the scale of the problems that can be efficiently solved by
DFO algorithms does not exceed a few tens of variables (Conn et al.,
2009). Besides, these techniques are not able to guarantee the optimal-
ity of the solution found, although they are designed to have the ability
to escape from local optima. In addition, DFO algorithms normally
require a large number of function evaluations, and perhaps, one of the
most important disadvantages is that DFO algorithms exhibit poor per-
formance in highly constrained systems. Generally, these algorithms
handle the constraints by adding a penalty to the objective function to
account for infeasibility.

An added difficulty regardless the optimization technique is related
to the convergence of flowsheets with several recycle streams. As simu-
lations become more complex, the robustness (in terms of convergence)
decreases and the simulator becomes prone to errors.

These approaches for solving synthesis problems are not new.
A considerable amount of literature supports the synergy achieved
through the smart integration of chemical process simulators with an
external optimizer based on gradient information (Balas, 1979; Brunet
et al., 2012; Caballero et al., 2005; Diaz and Bandoni, 1996; Diwekar
et al., 1992; Navarro-Amords et al., 2014; Raman and Grossmann, 1994;
Reneaume et al.,, 1995) and metaheuristic techniques (Aspelund et al.,
2010; Bravo-Bravo et al.,, 2010; Chen et al., 2014; Dantus and High,
1999; Eslick and Miller, 2011; Gross and Roosen, 1998; Gutiérrez-Antonio
and Briones-Ramirez, 2009; Javaloyes-Antén et al., 2013; Leboreiro and
Acevedo, 2004; Odjo et al., 2011; Vazquez-Castillo et al., 2009).

Some researchers have proposed frameworks to reduce the com-
plexity of the optimization models through the use of surrogate models
(Jones et al., 1998; Shao et al., 2007; Won and Ray, 2005; Xiong et al.,
2007). A surrogate model is a set of mathematical functions, based
on data generated from the simulation. In this way, the optimiza-
tion of an analytically tractable and computationally cheap surrogate
model replaces the original black box process. Most often, for complex
systems, it is recommended to disaggregate the whole process into

smaller units and model each block separately, ensuring that all rel-
evant connectivity variables have also been included (i.e., component
flows, temperatures, and pressures of each stream).

The main novelties of the proposed approach are at the modeling
stage and at solution stage.

At the modeling level, as far as we know, the deterministic opti-
mization of problems related to large-scale superstructures with a
non-fixed topology dealing with hybrid models involving process simu-
lators, explicit constraints and surrogate models for dealing with noise
units and third-party modules (i.e., non-numerical noisy proprietary
models) has never been studied.

At the solution stage, we use a logic-based algorithm—the Logic-
Based Outer Approximation algorithm (Turkay and Grossmann, 1996).
Logic-Based Algorithms do not require the reformulation of the prob-
lem as an MINLP. The NLP sub-problems can, therefore, be efficiently
solved. The numerical efficiency of the optimization is improved by
using a distributed approach for surrogate models (we use small surro-
gate models with a reduced number of degrees of freedom instead of a
single large model). The advantage is that we minimize the necessity of
resampling during the optimization (Biegler et al., 2014; Quirante et al.,
2015).

In this work, we have used the Kriging algorithm to build the
surrogate models since they are computationally efficient and they
need relatively small sampling data to be built. Several works have
been carried out to overcome the challenges of simulation-based
optimization using surrogate models based on Kriging interpolation.
Caballero and Grossmann (2008) studied the optimization of a disag-
gregated flowsheet using Kriging models, obtaining unit operations
with low-level noise. Henao and Maravelias (2011) used artificial neu-
ral networks for disaggregating models. Other works have modeled
and optimized chemical processes using Kriging-based techniques
(Davis and Ierapetritou, 2007; Palmer and Realff, 2002a,b; Quirante and
Caballero, 2016; Quirante et al., 2015). A review of Kriging applications
in simulation was made by Kleijnen (2009).

The objective of this work is to develop an optimization-based sim-
ulation tool that uses a process simulator as calculation engine, where
surrogate models based on Kriging interpolation replace those unit
operations that introduce numerical noise or need a large CPU time to
converge. At the same time, it allows us to introduce explicit equations
in such a way that the resulting model includes surrogate models, unit
operations maintained in the process simulator and explicit equations.
The rest of this article is organized as follows. In the next section, we
discuss the main features of the proposed approach. Then, to illus-
trate this approach, we use the superstructure proposed by Turkay
and Grossmann (1998) for the synthesis of the vinyl chloride monomer
(VCM). To complete the study of the VCM process, the influence of the
heat integration on the profit of the process is studied. Besides, the eco-
nomic feasibility of the optimized VCM process is evaluated assuming
uncertainty in raw material and product prices. Finally, the conclusions
of this work are summarized at the end of the paper.

2, Methodology

In the proposed approach, simulation-based optimization
of complex processes is performed using derivative-based
solvers. The superstructure, which includes all the alterna-
tives of interest of the process that we need to optimize, is
implemented at the level of the process simulator, with the
added feature that those unit operations that are inherently
noisy and/or expensive to converge (in terms of CPU time)
are replaced by surrogate models based on Kriging interpola-
tion (e.g., distillation columns and reactors). The units that do
not introduce numerical noise (such as mixers, splitters, cool-
ers/heaters, compressors, valves or pumps) are maintained
in the process simulator. The surrogate models are built in
MATLAB from training data sets obtained from the process
simulator. In addition, the equations related to capital and
operating costs are implemented as explicit equations.
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