Accepted Manuscript

Title: Plasma-etched electrospun nanofiber membrane as adsorbent for dye removal

Authors: Lu Bai, Lu Jia, Zhaodong Yan, Zhicheng Liu, Yaqing

Liu

PII: S0263-8762(18)30056-X

DOI: https://doi.org/10.1016/j.cherd.2018.01.046

Reference: CHERD 3020

To appear in:

Received date: 17-8-2017 Revised date: 6-1-2018 Accepted date: 25-1-2018

Please cite this article as: Bai, Lu, Jia, Lu, Yan, Zhaodong, Liu, Zhicheng, Liu, Yaqing, Plasma-etched electrospun nanofiber membrane as adsorbent for dye removal. Chemical Engineering Research and Design https://doi.org/10.1016/j.cherd.2018.01.046

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Plasma-etched electrospun nanofiber membrane as adsorbent for dye removal

Lu Bai^{a,b}, Lu Jia^a, Zhaodong Yan^a, Zhicheng Liu^{a,c*}, Yaqing Liu^{a*}

- a Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
- b School of Chemical and Environmental Engineering, North University of China, Taiyuan 030051, China
- c Department of Mechanical Engineering, National University of Singapore, Singapore, 117574, Singapore
- * Corresponding author: zcliu11@gmail.com; lyq@nuc.edu.cn

Highlights:

- A simple and green plasma treatment was used to fabricate PLLA fibrous adsorbents.
- The methylene blue dye was rapidly adsorbed on the plasma-etched nanofiber membrane.
- The adsorption kinetics follows the pseudo-second-order model.
- The isotherm data is well described by Langmuir model.
- The plasma-etched PLLA nanofiber membrane exhibited good reusability.

Abstract

The removal of hazardous dyes from wastewater is essential for environmental remediation. A simple, green and effective air plasma etching treatment was introduced to fabricate PLLA nanofibrous adsorbents. The cationic methylene blue (MB) dye could be rapidly adsorbed on the surface of plasma-etched PLLA nanofiber membrane through electrostatic interaction. It was attributed to the increased surface area and the generated binding sites after the plasma treatment. The adsorption behavior was influenced by both the plasma etching time and the initial MB concentration. It was found that the adsorption kinetics fits well with the pseudo-second order model, and the isotherm data fits well with the Langmuir model, revealing that monolayer MB was chemically adsorbed on the adsorbent. Moreover, the plasma-etched PLLA nanofiber membrane has also exhibited good reusability. It is believed that the plasma treatment may facilitate the design and fabrication of a new class of nanofibrous adsorbents.

Keywords: Electrospun Nanofiber, Adsorption, Plasma, Methylene blue, Membrane

Download English Version:

https://daneshyari.com/en/article/7006186

Download Persian Version:

https://daneshyari.com/article/7006186

<u>Daneshyari.com</u>