Available online at www.sciencedirect.com
ScienceDirect

Control Engineering Practice 15 (2007) 14031415

CONTROL ENGINEERING
PRACTICE

www.elsevier.com/locate/conengprac

Improving automation software dependability: A role for
formal methods?

Timothy L. Johnson™

GE Global Research, K-1, 5C30A, 1 Research Cir., Niskayuna, NY 12309, USA

Received 29 April 2005; accepted 4 July 2006
Auvailable online 10 October 2006

Abstract

The growth of manufacturing control software from simple NC and PLC-based systems to concurrent networked systems
incorporating PCs, PLCs, CNCs, and enterprise databases has created new challenges to the design, implementation, and maintenance of
safe and dependable manufacturing systems. Key milestones in this evolution, and the prospects for the use of formal verification
methods in achieving enhanced dependability of future manufacturing software, are examined in this paper and presentation.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: System engineering; Reliability theory; Safety analysis; Automation; Programming theory

1. Introduction

In the US, the Denver International Airport is often used
by the Federal Aviation Administration (FAA) as a test
site for new technologies. A perennial dread of the air
traveler is the baggage handling system: lost bags, delayed
bags, and worst of all, bags transferred to the wrong
airline, and ending up in remote places. So, the FAA and
the Denver businesses and politicians decided that the
brand new airport would be a wonderful place to showcase
new baggage handling technology. The system require-
ments were duly prepared, the contract awarded, and
millions of dollars committed to a network of computer-
controlled conveyors that would whisk luggage immedi-
ately to its intended destination (deNeufville, 1994). But
then came the control system. The initial indication that
something was wrong occurred when the rest of the airport,
and conveyors, were in place, but the software design had
barely begun. The project became a public burden when it
was over 2 years late on delivery (the rest of the airport
could not be used without it). Finally, the time for initial
testing arrived: The system could not do even the most
basic luggage transport correctly. Patience wore thin.

*Tel.: +15183875096; fax: + 1518 3876845.
E-mail address: johnsontl@research.ge.com.

0967-0661/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.conengprac.2006.07.005

Political and business reputations were ruined. Finally,
the system was scrapped and a “‘semi-automated” (viz.,
conventional) system was used instead! From the control
engineer’s perspective, the most serious consequence of this
type of failure is that the public was left with the impression
that automation itself was at fault, and not that (as was
undoubtedly the case) the project was mis-managed.
Dozens of airports around the country will now opt for
less automated systems in favor of more automated ones,
and control engineers will have less to do.

The Denver Airport baggage-handling example illus-
trates the public consequences of perceived lack of
automation software dependability. As a whole, only about
30-40% of large software projects that are initiated will
run to completion (Brooks, 1995), and this was one that
did not. Even though the record in manufacturing
systems—which are highly structured—is probably better
than this average, it still could benefit from substantial
improvement (Place and Kang, 1993—selected references
from older literature have also been repeated here). Start-
ups of new manufacturing and process plants are often
notoriously delayed. And increasingly software develop-
ment is at the heart of most of the problems. With the rapid
decrease in cost, and even more rapid increase in the
capabilities of computers over the last decade, the
computing hardware components of automation have


www.elsevier.com/locate/conengprac
dx.doi.org/10.1016/j.conengprac.2006.07.005
mailto:johnsontl@research.ge.com

1404 T.L. Johnson | Control Engineering Practice 15 (2007) 1403-1415

become less costly, more versatile, and more reliable. So
the drive to shift hardware functions into software has
accelerated over the last decade. Manufacturing software
itself has expanded from isolated, carefully designed PLC
logic systems that operate for months without interruption,
to PC-based platforms, where even in the absence of an
application, the operating systems must be rebooted every
few days!

Not only have manufacturing control applications
become rapidly more complex, but also the expectations
of timely response have grown increasingly more demand-
ing. At the same time, other design requirements have also
grown more demanding. Availability targets have ex-
panded from 95% to 99.99% or higher in some applica-
tions (e.g., network broadcasting). The numbers of
measurement and control points and size of control
programs have exploded. Networks are a part of almost
every system (Perrow, 1984). Enterprise integration, as well
as sensor-level integration is expected.

In spite of the increasing level of dependence of
manufacturers on automation software that is expected
to be safe and reliable, very little rigorous statistical data
concerning manufacturing software mishaps is available.
The best publicly available data in the US appears to be in
the area of Occupational Health and Safety incident
investigations, and in documented court cases involving
software failures. However, in the case of Occupational
Health and Safety, many accident root causes have been
attributed to process, sensing, or display irregularities—
even when software is also involved. In court cases, e.g.,
those involving personal injury in manufacturing opera-
tions, the legal profession is frequently challenged to
differentiate between error on the part of a software user,
and errors in the software itself: until very recently, end
responsibility for safety-related functions has often been
delegated by the courts to users or operators of software,
even in cases of software malfunction. The vast majority of
unscheduled outages are “‘routine”, and the appropriate
unit or subunit is investigated, and then reset or restarted
within a few minutes; nevertheless, part production runs
below capacity during this time interval.

The advent of web-based and distributed software, often
with multithreaded (concurrent) operation, and the con-
templated use of wireless links for factory networks will
create system-level fault modes of a complexity that could
only be imagined a few years ago. In spite of this, it is not
likely that computing progress will be reversed by these
considerations. Instead, what may be required is a host of
much more powerful verification and validation methods.
The study of more powerful verification methods is bound
to become more important as software becomes more
complex. The purpose of this presentation is to review
some of the fundamental factors underlying manufacturing
software dependability, to survey the state of the art in
current products and research related to verification,
validation, and safety of such systems, and to provide a
brief preview of some more recent research that shows

promise in improving the quality of service (QOS) of
manufacturing automation software. With an understand-
ing of feedback processes and manufacturing system
dynamics, control engineers and scientists are well qualified
to play vital role in the future of dependable manufacturing
systems.

2. The evolution of dependability in manufacturing control

Many of us are familiar with the development of
manufacturing automation equipment—but have we ever
thought about the evolution of test and verification for
such equipment? The purpose of this brief sprint through
history is to trace the growth of test and verification
processes and issues that have accompanied the better-
known improvements in manufacturing automation and
computation. This provides a context in which to assess the
growth of formal methods in this field.

The earliest machine tool control languages, such as APT,
that were invented in the late 1940s (Alford and Sledge,
1976), were deliberately designed for ease of test. The core
elements of the language were simple instructions (START,
STOP, MOVE). But, even in these relatively simple cases,
program verification could be difficult. The developer would
be required to pre-compute coordinate transformations with
a slide rule! Running them through the machine tool,
determining if the part was right, and then modifying the
program if necessary tested the early programs.

Data and logic of the programs were combined in the
MOVE statement. The entire mechanical structure and
coordinate system of the machine tool was presumed to be
known to the user. The only transfer of control was via an
unconditional GO TO. Instructions were executed accord-
ing to a fixed, precisely timed clock cycle. No safety
checking was performed, so the machining head could
collide with any jig or guide, or indeed with a part of the
machining table itself. Such machines were commonly
found in a state of considerable damage after a few years of
use! The machine and software could be verified, and even
concurrently calibrated, by running a set of simple
calibration routines and then gauging the resulting work-
pieces to compare them with their intended values. Today’s
machine tools, of course, support a much higher degree of
complexity, and may include built in 3D simulators with
collision detection capabilities (Fig. 1).

In the late 1950s and throughout the 1960s and 1970s, a
complementary machine was born: the programmable logic
controller (PLC). Such machines originally came about to
replace racks of relays that had been developed in the 1920s
to 1940s to govern the sequential control of complex
operations such as telephone line switching, railroad
signalling, and some early automation equipment. The
development of the PLC was stimulated by several
dependability problems with relays racks:

e Relays would fail mechanically after 30,000 or 40,000
operations.



Download English Version:

https://daneshyari.com/en/article/700639

Download Persian Version:

https://daneshyari.com/article/700639

Daneshyari.com


https://daneshyari.com/en/article/700639
https://daneshyari.com/article/700639
https://daneshyari.com/

