Available online at www.sciencedirect.com

science (@horneer:

Control Engineering Practice 14 (2006) 1387-1393

CONTROL ENGINEERING
PRACTICE

www.elsevier.com/locate/conengprac

A flexible software for real-time control in nuclear fusion experiments

G. De Tommasi®*, F. Piccolo®, A. Pironti®, F. Sartori®

*Associazione EURATOM/ENEA/CREATE, Dipartimento di Informatica e Sistemistica, Universitd di Napoli Federico II, Via Claudio 21,
1-80125 Napoli, Italy
°Euratom/UKAEA Fusion Ass. Culham Science Centre, Abingdon OX14 3EA, UK

Received 8 February 2005; accepted 7 October 2005
Available online 10 November 2005

Abstract

JETRT is a software framework particularly suited for implementation of both real-time control and data acquisition systems. It is
especially designed to work in a complex experimental environment such as the JET nuclear fusion facility. This new architecture
maximizes the software reusability. The project-specific algorithm is compiled into a separate software component, in order to achieve a
separation from the plant interface code. JETRT provides a set of tools to perform most of the validation phase on a Windows running
desktop PC. Thanks to these design choices, both the development costs and the commissioning time have been reduced and even non-
specialist programmers can easily contribute to the deployment of a new real-time system.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Real-time systems; Object-oriented design and programming; Software tools

1. Introduction

Tokamaks are the most promising confinement devices
in the field of controlled nuclear fusion: their principal
objective is to contain a thermonuclear plasma by means of
strong magnetic fields.

JET tokamak (Wesson, 2000) is the world’s largest
pulsed operated fusion experiment, where several compu-
ters interact in order to perform real-time control and
monitoring services (Lennholm et al., 1999; Puppin et al.,
1996).

Due to the complex environment it is important to
standardize the coding practice as well as to separate the
application software from its interfaces to the external
system. Such an approach is the key to minimize
development time, cost and to maximize reusability and
efficiency.

JETRT is a new software framework used at JET to
develop both real-time control and data acquisition

*Corresponding author. Tel.: +390817683853; fax: +390817683816.
E-mail addresses: detommas@unina.it (G. De Tommasi),
fpiccolo@jet.uk (F. Piccolo), apironti@unina.it (A. Pironti),
fisa@jet.uk (F. Sartori).

0967-0661/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.conengprac.2005.10.001

systems. JETRT differs from the hardware and software
architectures used in other nuclear fusion experiments
(Behler et al., 1999; Luchetta and Manduchi, 1999; Moulin
et al., 1998) because it has been developed to separate the
algorithmic part of a real-time application (User Applica-
tion) from the plant-interface software (JETRTApp). This
design choice has been done to standardize the application
development, to achieve portability among the different
computer platforms, and to increase the code reusability.

JETRT framework has been successfully used to develop
and test many systems among the Real-Time Data Network
processing nodes (RTDN, Felton et al., 1999). For example
the eXtreme Shape Controller (Ambrosino et al., 2003;
Ariola et al., 2003) runs on a reliable PowerPC/VxWorks
architecture with a latency time of 1 ms. Non-safety critical
data acquisition systems run on a cheaper INTEL/
WinNT4 platform with a latency time of 2—10 ms.

This paper gives an overview of the whole JETRT fra-
mework and describes in more details the architecture of
real-time executor JETRT App. The next section introduces
the JET experiment. Section 3 deals with design choices
and carries out a comparison between our approach and
other design methodologies and technologies for real-time
systems. In Section 4 an overview of the whole framework


www.elsevier.com/locate/conengprac

1388 G. De Tommasi et al. | Control Engineering Practice 14 (2006) 1387-1393

is given. Sections 5, 6 introduce JETRTApp architecture,
and timing issues. A short overview about how JET-
RTApp works with different I/O boards is given in the next
section. Section 8§ deals with the User Application plug-in,
while the following section introduces the internal debug-
ger feature available within the JETRT framework. Even-
tually, some concluding remarks are presented.

2. The JET experiment

In a fusion experiment the main aim is to obtain a
plasma (a fully ionized gas) with the desired characteristics.
This result cannot be achieved by simply pre-programming
the actuators. Because of the various types of instabilities
shown by the plasma, several corrective actions have to be
taken.

The constraints on the latency times of the control
systems have always to be met: the systems containing
these tasks can be classified as hard real-time systems, in
accordance with the operational definition given in Liu
(2000). At JET typical cycle times for control loops range
between 50 us (Vertical Stability System, Lennholm et al.,
1997) and 1 ms (eXtreme Shape Controller).

JET is a pulsed machine: this means that an experiment
is performed every 20—60 min, during which the plasma is
formed and sustained for about 1 min. As a consequence of
such a cycle, all the real-time applications operate in two
different modalities: ON-LINE and OFF-LINE. During
the experiment, the systems are in the ON-LINE mode and
they perform real-time measurement, control or protective
actions. In this phase all the communications are disabled
and the hard real-time constraints on the latency time have
to be met, while there is no need to check such constraints
in the OFF-LINE mode.

When a system is in the OFF-LINE mode it can interact
with the other JET subsystems. These interfaces are the
main sources of technical complexity for the applications.
Before and after every pulse the Plant Supervisor sends to
all JET subsystems a change-of-state request to synchro-
nize their evolution. As soon as the scientists have finished
to programme a new experiment, the Level-l1 plant
management system sends a message to each real-time
node, containing the new set-up parameters. Eventually,
the information collected during the pulse is sent to
General Acquisition Program (GAP), which is the data
management system.

JETRT framework, helps working in this environment,
answering the need for a fast and reliable deployment of
new systems.

3. JETRT design choices

Along the last 20 years, several real-time systems have
been deployed at JET. Since the very beginning, most of a
project code was recycled during the implementation of the
next one, hoping to save development and testing time.
While this practice proved to be very helpful in reducing

programming costs, it eventually appeared to have too
many shortcomings:

e the hardware-related details where mixed with the
application ones. In order to test the same application
on a different platform, it was necessary to emulate the
target hardware.

® Once a specific hardware platform had run out of its
commercial life, the migration to a new platform
required an almost complete re-writing of the code.

e Only the people with enough knowledge of the platform
could re-use the existing software.

Since JET is an experimental environment, each real-
time system is realized only once, therefore, the costs of a
prototype cannot be diluted as in a mass production. For
this reason the system architecture needs to satisfy two
additional requirements:

(1) use components on the shelf as much as possible;
(2) ensure enough processing power, such as to satisfy the
timing constraints.

At the same time it was observed that, in the ON-LINE
mode, all of the deployed systems, despite their complexity,
could actually be reduced to the simple iterative model
shown in Fig. 1.

Once the standard hardware architecture has been
chosen, the real-time application has to be designed to
realize the iterative cycle introduced above, when in the
ON-LINE mode. In the OFF-LINE mode, the application
has to accomplish all the communications and ancillary
tasks. These tasks are the same for all the JET applications
and therefore this part of the code can be re-used when a
new system is developed.

It follows that the definition of the ON-LINE processing
task is the only thing to do when creating a new real-time
application.

The scheduling policy adopted in the JETRT framework
is the priority-based pre-emptive (Liu, 2000) with the
granularity equals to the minimum allowed by the platform
(10ms for INTEL/WinNT4 and 200ps for PowerPC/

Data Acquisition

Il

Processing

il

Output of results

Fig. 1. JETRTApp iterative model.



Download English Version:

https://daneshyari.com/en/article/700662

Download Persian Version:

https://daneshyari.com/article/700662

Daneshyari.com


https://daneshyari.com/en/article/700662
https://daneshyari.com/article/700662
https://daneshyari.com/

