
chemical engineering research and design 1 0 9 ( 2 0 1 6 ) 397–404

Contents lists available at ScienceDirect

Chemical  Engineering  Research  and  Design

j ourna l h omepage: www.elsev ier .com/ locate /cherd

Block-oriented  feedforward  control  with
demonstration to nonlinear  parameterized  Wiener
modeling

Derrick K. Rollinsa,b,∗, Yong Meia, Stephanie D. Lovelanda,
Nidhi  Bhandaria

a Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
b Department of Statistics, Iowa State University, Ames, IA 50011, United States

a  r  t  i  c  l  e  i  n  f  o

Article history:

Received 21 July 2015

Received in revised form 1

December 2015

Accepted 10 February 2016

Available online 20 February 2016

Keywords:

Feedforward control

Model-based control

Wiener modeling

Block-oriented modeling

Nonlinear modeling

Nonlinear regression

a  b  s  t  r  a  c  t

Block-oriented modeling (BOM) is a multiple-input, multiple-output modeling approach for

nonlinear dynamic processes. Current implementation of BOM into feedforward control

(FFC)  results in linearization of the model and decomposition into separate components for

each input. This work presents a multiple-input BOM FFC approach that does not linearize

and  decompose the BOM into separate components for each input. This implementation

uses a new FFC law that uses the complete BOM in the time domain. The approach is demon-

strated with a Wiener model for a simulated continuous stirred tank reactor (CSTR) with

four (4) measured inputs. The Wiener model is nonlinear in the physically-based dynamic

parameters of the transfer functions and linear in the static parameters of the static gain

function. The static gain function has a second order linear regression form with interac-

tion and quadratic terms. The Wiener model is built under open-loop conditions using a

Box–Behnken statistical experimental design consisting of 27 sequential step tests. Under a

sequence of multiple input changes, the addition of this feedforward controller to the feed-

back controller reduced the standard deviation of the controlled variable from its set point

by  70% in comparison to the response with only feedback control.

©  2016 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

1.  Introduction

There are basically two types of control approaches – feed-
back control (FBC) and feedforward control (FFC). FBC is any
control approach that determines the settings for the manipu-
lated variable based on the deviation of the controlled variable
from its target or set point (Yset). This deviation can be at the
current time instant, as in common FBC or a more  sophis-
ticated one like a Smith Predictor, or it can be a predicted
deviation at some future time as in model predictive control
(MPC). FFC differs from FBC in that it changes the manipu-
lated variable based on the values of input variables and not
the deviation from set point. More  specifically, the FFC control
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objective is to maintain the output of the FFC model, which
consists of measured inputs only, at a constant value by chang-
ing the manipulated variable to “compensate” for changes in
the measured inputs. Thus, to implement FFC effectively on
the measured set of inputs, the model must be capable of
accurate determination of the manipulated variable to “offset”
the measured input changes while in an automatic control
scheme. Approximations of the model to incorporate it into
the control algorithm can also adversely affect control perfor-
mance.

Some models for nonlinear gain behavior have been pro-
posed for model-based controllers including radial basis
functions (RBF) (Alexandridis and Sarimveis, 2005; Fischer
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Fig. 1 – Block diagram for the Wiener network with p
inputs and one output. Each input, xi, is passed through
their own unity gain linear dynamic block, Gi, after which
these unobservable intermediate outputs are collected and
passed through a single unrestricted static gain function,
f(V), to produce the output, y.

et al., 1998), genetic algorithms (GA) (Al-Duwaish and Wasif,
2001), Nonlinear Auto Regressive Models And eXogenous
inputs (NARMAX) models (Di Palma and Magni, 2004; Gao
et al., 2003; Havlena and Findejs, 2005), and block-oriented
models (BOMs) (Pearson and Ogunnaike, 1997; Rollins et al.,
2003; Greblicki, 2000; Bhandari and Rollins, 2003, 2004; Chin
et al., 2004). An important advantage of NARMAX and BOMs
is that they can use transfer functions, i.e., linear dynamic
equations with physically interpretable parameters. However,
a limitation of the NARMAX structure is that all of its transfer
functions have the same characteristic equation or denomina-
tor dynamics (Rollins et al., 2015a). BOMs use the outputs from
blocks of dynamic (transfer) functions that are linear (L) differ-
ential equations as inputs to functions that can be nonlinear
(N) with respect to static gain parameters. The simplest of the
BOMs is the Hammerstein network (NL), which has an N block
followed by an L block and the Wiener network (LN), which
reverses the order of these two blocks. More complicated
block-oriented structures include sandwich models such as an
LNL network, which has linear dynamic blocks, followed by a
nonlinear static block, followed by a second linear dynamic
block. When the inputs can have different dynamic behavior,
the Wiener network is the preferred choice over Hammerstein
and is superior to NARMAX because the inputs can have com-
pletely different dynamic structures (Rollins et al., 2015a) as
shown by its block diagram in Fig. 1.

A number of researchers have studied the identification of
model parameters for the Hammerstein and Wiener networks,
including Greblicki (1992, 2000), Eskinat et al. (1991), Shi and
Sun (1991), and Al-Duwaish and Wasif (2001). Perhaps, due to
its complexity, the LNL network has not gotten as much atten-
tion, but some have proposed methods for its parameter iden-
tification (Wills et al., 2013). There has been much progress
over the last decade in the identification of BOMs (Wills et al.,
2013; Biagiola and Figueroa, 2011; Romano and Garcia, 2011;
Yu et al., 2013; Giri and Bai, 2010; Jing, 2011; Harnischmacher
and Marquardt, 2007) and recently, by taking a nonlinear
parameterized approach (Rollins et al., 2010) for estimation of
the dynamic parameters, Rollins et al. (2015a) demonstrated
accurate Wiener modeling using nine (9) inputs on a real
distillation process with large variation due to unmeasured
disturbances and with highly pairwise cross-correlation of the
inputs. While there has been progress in the use of BOMs
in model based control (Gregorčič and Lightbody, 2010; Kim
et al., 2012; Ding and Ping, 2012), progress of FFC using BOMs

appears to have been limited to single input models (Reddy
and Chidambaram, 1995; Dolanc and Strmčnik, 2008).

To implement a p-input nonlinear model structure the cur-
rent FFC approach would linearize the structure, transfer it to
the Laplace domain and decompose it into p FFC blocks. Addi-
tional approximations would be required for FFC blocks that
are physically unrealizable to make them physically realizable.
A numerical procedure (which is another approximation) such
as Euler’s method would be needed to obtain the output from
each FFC block at each time instant. For the approach pro-
posed in this work, a FFC law and methodology is presented
that eliminates all these approximations. More  specifically,
the value of the manipulated variable to “offset” input changes
at each time instant is obtained directly from the FFC model in
the time domain in a root solving procedure and passing this
solution through the inverse of the process transfer function.
Since this procedure is done completely in the time domain
the inverse of the process transfer function uses backward
difference approximations for derivatives. Thus, an approx-
imation to achieve a physically realizable transfer function is
not needed for the proposed approach.

Thus, the objective of this work is the development of a
general FFC framework for multiple-input BOMs in FFC with
nonlinear static gain behavior. The BOM structure and identifi-
cation will be demonstrated using a nonlinear parameterized
Wiener model (Kotz et al., 2014; Rollins et al., 2010, 2015a)
with a second-order static gain structure on a simulated CSTR.
The Wiener model is built under open-loop conditions using a
Box–Behnken statistical experimental design consisting of 27
runs or sequential step tests. The FFC model will be imple-
mented using the proposed FFC approach discussed above.
Under a sequence of multiple input changes, the addition of
this feedforward controller to the feedback controller reduced
the standard deviation of the controlled variable from its set
point by 70% in comparison to the response with only feedback
control.

2.  Methodology

This section gives the methods used to develop and evaluate
the BOM FFC approach with specific application to a CSTR.
The general BOM FFC law is presented first and then its form
specific to the Wiener modeling approach used in this work.
This includes specification of the Wiener model (WM), its FFC
law, and the parameter estimation approach. Lastly details of
the CSTR are given in this section.

2.1.  General  FFC  law

The concept of FFC appears to have been applied as early as
1925 to level control systems for boiler drums (Seborg et al.,
2011). It allows for theoretically perfect control of a process
system because it corrects for input disturbances before the
process outputs deviate from their desired values. However,
this requires timely and efficient measurement of all possible
process disturbances, which is not likely in most applications,
so it is commonly used in conjunction with FBC. The addition
of FBC compensates for any deviation of the process output
from its set point, regardless of the cause of the deviation.
For each input, its FFC law is typically found independently of
the other inputs from a function in the Laplace domain that
uses an approximation to meet the requirement of physically
reliability when necessary (Seborg et al., 2011). The joint FFC
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