Available online at www.sciencedirect.com

science (@homect: CONTROL ENGINEERING
,. 3 PRACTICE
ELSEVIER Control Engineering Practice 14 (2006) 1259-1267
www.elsevier.com/locate/conengprac
ACTL strong negation and its application to
hybrid systems verification ™
Zhi Han®*, Alongkrit Chutinan®, Bruce H. Krogh?
2Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
®The MathWorks, Inc., 3 Apple Hill Dr, Natick, MA 01760-2098, USA
Available online 20 March 2006
Abstract

Model checking procedures for verifying properties of hybrid dynamic systems are based on the construction of finite-state
abstractions. If the property is not satisfied by the abstraction, the verification is inconclusive and the abstraction needs to be refined so
that a less conservative model can be checked. If the hybrid system does not satisfy the property, this verify—refine procedure usually will
not terminate. This paper introduces the concept of strong negation for ACTL formulas as an auxiliary condition that can be verified to
obtain a conclusive negative verification result from a finite-state abstraction in certain cases. The concepts are illustrated with an

example from automotive powertrain control.
© 2006 Elsevier Ltd. All rights reserved.

Keywords: Verification; Hybrid systems; Model checking; Abstraction

1. Introduction

Recently, there has been a considerable interest in
extending methods for formal verification of discrete
systems, such as digital circuit designs, to control systems
with hybrid dynamics. The goal of formal verification is to
demonstrate that a specification for the system is satisfied
for all possible system behaviors, starting from a given set
of initial conditions and possibly for ranges of system
parameters. Because the sets of reachable states for
continuous dynamic systems can only be approximated in
most cases, current methods for hybrid system verification
will usually not terminate when a specification is not
satisfied. Thus, current methods can provide positive
verification results, but will not provide negative results.
This paper presents a method for discovering when a
specification will fail using existing tools by augmenting the

* A preliminary version of this paper appeared in the Preprints of the
IFAC-Conference Workshop on Discrete Event Systems, Reims, France,
September 2004.

*Corresponding author.

E-mail addresses: zhih@ece.cmu.edu (Z. Han),
Alongkrit.Chutinan@mathworks.com (A. Chutinan),
krogh@ece.cmu.edu (B.H. Krogh).

0967-0661/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.conengprac.2006.02.009

given specification with an additional term called the strong
negation of the specification.

The standard approach to hybrid system verification is
to construct a finite-state abstraction so that methods for
verifying properties of discrete state systems can be applied
to hybrid dynamic systems (Alur, Henzinger, Lafferriere, &
Pappas, 2000; Chutinan & Krogh, 2001). The main
restriction in this approach is that only universal properties
can be verified. A universal property is a property that is
asserted over all possible behaviors of the system. For
example, the statement that “the speed of the car remains
between the lower and upper speed limits for all possible
trajectories’ is a universal property. Various topics devoted
to universal properties can be found in the formal
verification literature. In particular, this paper focuses on
the universal properties specified by a class of computation
tree logic (CTL) called ACTL (Clarke, Grumberg, & Peled,
1999). For a universal property, if the specification is true
for the abstraction, it is true for the hybrid system, since all
possible hybrid trajectories are accounted for in the
conservative abstraction. If the model checker returns a
negative result, one is assured the specification is false for
the hybrid system only if the abstraction is an absolute
equivalent representation, called a bisimulation, of the

www.elsevier.com/locate/conengprac

1260 Z. Han et al. | Control Engineering Practice 14 (2006) 1259-1267

original hybrid system (Alur et al., 2000). As this is rarely
the case, the only recourse is to refine the abstraction; that
is, to make the abstraction less conservative, and then try
again with the hope that eventually an abstraction will be
constructed for which the specification is true. In certain
cases, checking the strong negation condition introduced in
this paper will allow an abstraction-based verification tool
to terminate with a conclusive negative result, even if the
abstraction is not a bisimulation of the hybrid system.

Methods based on abstractions which “‘strongly pre-
serve” certain classes of properties have been proposed for
various verification frameworks (Dams, Gerth, & Grum-
berg, 1997, 1993; Godefroid, Huth, & Jagadeesan, 2001;
Godefroid & Jagadeesan, 2002). These frameworks have
two types of transitions in the abstraction: must-transi-
tions and may-transitions. A transition in the abstraction
is a must-transition if there exists at least one correspond-
ing actual transition in the underlying system, otherwise it
is labeled as a may-transition, where the corresponding
transition may or may not exist in the actual system. By
distinguishing the two types of transitions in the algorithm,
conclusive negative results can be obtained for the system.
This technique is not applicable for verification of hybrid
systems, however, since the finite-state abstraction of a
hybrid system is based on reachability analysis for the
continuous dynamics (Alur et al., 2000; Chutinan &
Krogh, 2001), where all transitions are may-transitions.
To construct the must-transitions for a hybrid dynamic
system, the set of states reachable from each abstract state
has to be computed, which is the most expensive
computation in the verification procedure because it
involves the computation of sets of reachable states for
continuous dynamic systems.

For background, the following section describes CHECK-
MATE, a MATLAB-based tool for hybrid system verification.
Section 3 introduces the basic definitions used in formal
verification. Section 4 presents strong negation for ACTL
formulas and shows how it can be used to demonstrate
how an ACTL expression is not satisfied based on
verification of an abstraction of a hybrid system. Section 5
illustrates the application of strong negation to provide
conclusive negative results. The concluding section sum-
marizes the contributions of this paper and discusses
directions for further work.

2. Hybrid system verification using CHECKIVIATE

This section introduces CHECKMATE, a tool developed at
Carnegie Mellon University to perform simulation and
formal verification of hybrid dynamical systems (Chutinan
& Krogh, 2003; Silva, Richeson, Krogh, & Chutinan,
2000). CHECKMATE is developed in the MATLAB-SIMULINK
environment. In contrast to tools like HyTtecu (Alur,
Henzinger, & Ho, 1996), where only linear hybrid
automata are considered, CHECKMATE verifies hybrid
system models with linear or nonlinear continuous
dynamics and polyhedral guard conditions. CHECKMATE

models assume urgent semantics: if one of the polyhedral
thresholds is enabled, the system makes a switch immedi-
ately. Due to the complexity in polyhedra computation,
CHECKMATE has been limited to hybrid dynamic systems
with order less than 6. The CHECKMATE software and its
document are available at http://www.ece.cmu.edu/
~webk/checkmate.

Hybrid systems are modeled in CHECKMATE using
SimuLINk block diagrams, and formal specifications of
desired properties are expressed as ACTL formulas
(defined in Section 3). The basic structure of a CHECKMATE
model is a closed loop consisting of a switched continuous
system block (SCSB), a set of polyhedral threshold blocks
(PTHBs) and a finite state machine block (FSMB). The
following paragraphs describe these blocks.

An SCSB models the continuous dynamics of the hybrid
system. The continuous dynamics in CHECKMATE are
modeled with state equations of the form x = f ,(x), where
d is the discrete mode of the system. To model the
switching behavior of the hybrid system, the SCSB block
has a input port d which is the discrete state of the hybrid
model. For different values of the discrete states, the SCSB
selects different sets of ODEs. The discrete state input is
generated from the FSMB (described below).

PTHBs represent convex polyhedral sets described by
{x|Cx<d}. CHECKMATE models hybrid systems that switch
when the state reaches boundaries of polyhedral sets in the
state space.

An FSMB models the switching scheme of the hybrid
systems using a STATEFLOwW chart. The inputs to the chart
are the events generated by PTHBs. The outputs of the
chart are the discrete states, which govern the switching of
the SCSB.

The verification procedure of CHECKMATE is based on
approximating the infinite-state transition system using the
abstraction framework called the approximate gquotient
transition system (QTS) (Chutinan & Krogh, 2001).
Flowpipes are the sets of states reachable along trajectories
starting from a given set of initial states. The boundaries of
the polyhedral thresholds are partitioned into polyhedral
regions that represent the set of states reached by the
flowpipe. The computations of reachable states (flowpipes)
continues until all reachable boundaries have been parti-
tioned. This creates the initial QTS. The QTS is discussed
in Section 3.

Fig. la shows an overview of the CHECKMATE verifica-
tion procedure. Given an ACTL formula ¢ and a
CHECKMATE model, CHECKMATE first converts the model
into an equivalent hybrid automaton model (Henzinger,
1996). Then an initial partition of the hybrid automaton is
computed using flow-pipe computations (Chutinan &
Krogh, 2003). The QTS is then verified against the given
ACTL specification ¢ using standard model checking
techniques for finite transition systems (Clarke et al., 1999).
If the verification fails due to the coarseness of the partition
for the QTS, the partition is refined to get a tighter
approximation. The process can be repeated until the QTS

http://www.ece.cmu.edu/~webk/checkmate
http://www.ece.cmu.edu/~webk/checkmate

Download English Version:

https://daneshyari.com/en/article/700695

Download Persian Version:

https://daneshyari.com/article/700695

Daneshyari.com

https://daneshyari.com/en/article/700695
https://daneshyari.com/article/700695
https://daneshyari.com

