Accepted Manuscript

Title: Removal of trimethylamine and isovaleric acid from gas streams in a continuous flow surface discharge plasma reactor

Author: Aymen Amine Assadi Abdelkrim Bouzaza Marguerite Lemasle Dominique Wolbert

 PII:
 S0263-8762(14)00202-0

 DOI:
 http://dx.doi.org/doi:10.1016/j.cherd.2014.04.026

 Reference:
 CHERD 1570

To appear in:

 Received date:
 25-10-2013

 Revised date:
 13-4-2014

 Accepted date:
 25-4-2014

Please cite this article as: Assadi, A.A., Bouzaza, A., Lemasle, M., Wolbert, D.,Removal of trimethylamine and isovaleric acid from gas streams in a continuous flow surface discharge plasma reactor, *Chemical Engineering Research and Design* (2014), http://dx.doi.org/10.1016/j.cherd.2014.04.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Removal of trimethylamine and isovaleric acid from gas streams in a
2	continuous flow surface discharge plasma reactor
3 4	Aymen Amine ASSADI ^{a.b} , Abdelkrim BOUZAZA ^{a,b*} , Marguerite LEMASLE ^{a,b} , Dominique WOLBERT ^{a,b}
5 6	^a Laboratoire Sciences Chimiques de Rennes - équipe Chimie et Ingénierie des Procédés, UMR 6226 CNRS, ENSCR, 11 allée de Beaulieu, 35700 Rennes, France.
7	^b Université Européenne de Bretagne.
8 9	* Corresponding author. Tel.: +33 2 23238056; fax: +33 2 23238120. E-mail address: <u>Abdelkrim.bouzaza@ensc-rennes.fr</u> (A. Bouzaza)
10	E-mail address. <u>Arbdeiktim, bodzaza/gense-teinies, ir</u> (A. Bodzaza)
11	
12	Abstract
13	
14	The removal of isovaleric acid (IVA) and trimethylamine (TMA) using nonthermal plasma
15	(NTP) in a continuous surface discharge reactor is investigated. The influence of the energy
16	density shows that its increment is accompanied by the increase of the removal rate. At
17	flowrate equal to $2 \text{ m}^3.\text{h}^{-1}$, when energy density extends three times, the removal rates of IVA
18	and TMA are increased from 5 to 15 mmol.m ⁻² .h ⁻¹ and from 4 to 11 mmol.m ⁻² .h ⁻¹ ,
19	respectively. The impact of relative humidity (RH) is also studied. An increase in % RH (up
20	to 20%) leads to a decrease of the removal rate. Additionally, the formation of by-products in
21	the surface discharge reactor and the plausible reaction mechanism of the two VOC were also
22	detected and discussed. Moreover, a kinetic model taking into account the mass transfer step
23	is developed in order to represent the experimental results. The model shows a good
24	agreement with experimental results.
25	
26	Keywords
27	
28	Surface discharge, VOCs, mass transfer, relative humidity
29	
30	1. Introduction
31	
32	VOCs are hazardous to health and environment; their emission causes serious
33	environmental problems such as stratospheric ozone depletion, photochemical smog,
34	greenhouse effect and so on (US EPA, 2008; Le Cloirec, 1998). Increasing awareness of
35	these emissions has resulted in legislation requiring stringent enforcement of new regulations
36	to improve the quality of the environment (US EPA, 2008). To remove those gaseous

Download English Version:

https://daneshyari.com/en/article/7007559

Download Persian Version:

https://daneshyari.com/article/7007559

Daneshyari.com