Contents lists available at ScienceDirect

Desalination

journal homepage: www.elsevier.com/locate/desal

Design and operation of membrane distillation with feed recirculation for high recovery brine concentration

DESALINATION

Jaichander Swaminathan, John H. Lienhard V^{*}

Rohsenow Kendall Heat and Mass Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

ARTICLEINFO ABSTRACT Keywords: Thermal-energy-driven desalination processes such as membrane distillation (MD), humidification dehumidification (MDH), and multi-stage flash (MSF) can be used to concentrate water up to saturation, but are restricted to low per-pass recovery values. High recovery can be achieved in MD through feed recirculation. In this study, several recirculation strategies, namely batch, semibatch, continuous, and multistage, are compared and ranked based on flux and energy efficiency, which together influence overall cost. Batch has higher energy efficiency at an energy efficiency.

a given flux than semibatch and continuous recirculation because it spends more operating time treating lower salinity water for the same value of overall recovery ratio. Multi-stage recirculation is a steady-state process that can approach batch-like performance, but only with a large number of stages. Feed salinity rises during the batch operating cycle, and as a result feed velocity may have to be increased to avoid operating above the critical specific area wherein both GOR and flux are low due to significant heat conduction loss through the membrane. Finally, the choice of optimal membrane thickness for batch operation is compared to that of continuous recirculation MD.

1. Introduction

Conventional brackish and seawater reverse osmosis systems are not readily applied for further concentration, towards zero-liquid-discharge, of desalination brines, produced water from hydraulic fracturing, and industrial effluents. Thermal-energy-driven technologies such as membrane distillation (MD) and humidification dehumidification (HDH) are considered to be promising for such brine concentration applications as they can operate at ambient pressure and relatively low temperatures. These brine concentration applications are characterized by a high recovery ratio requirement. However, MD (except multi-effect designs) is restricted to a low value of per-pass recovery ratio, necessitating some form of brine recirculation.

In this study, we will

- 1. compare energy efficiency and pure water flux of various recirculation designs (batch, semibatch, continuous and multi-stage) for brine concentration.
- 2. elucidate the value of a control scheme that avoids counter-productive conditions characterized by high heat conduction losses across the membrane towards the end of the batch cycle as feed salinity increases.
- 3. comment on the choice of optimal membrane thickness for a batch

recirculation system, and compare its performance against a similarly optimized continuous recirculation process.

1.1. Motivation for high product recovery

MD systems without recirculation have a low recovery ratio (RR). RR is the fraction of incoming feed water separated as pure water:

$$RR = \frac{M_{\text{permeate}}}{M_{\text{feed}}} \tag{1}$$

where M_{permeate} is the mass of permeate produced and M_{feed} is the mass of feed to treated. Instantaneous or per-pass recovery ratio through the MD module (which is achieved without recirculation) can be defined in terms of the pure water production rate ($\dot{m}_{\rm p}$) and feed inflow rate ($\dot{m}_{\rm f}$) as RR_{per-pass} = $\dot{m}_{\rm p}/\dot{m}_{\rm f}$. If $\Delta T_{\rm c}$ denotes the change in temperature along the length of the cold (preheat) stream, applying energy conservation for the preheated feed stream gives $\dot{m}_{\rm f} c_{\rm p} \Delta T_{\rm c} = \dot{m}_{\rm p} h_{\rm fg} + \dot{Q}_{\rm m,cond}$, where $\dot{Q}_{\rm m,cond}$ is the heat transferred by conduction across the membrane. Since $\dot{Q}_{\rm m,cond} > 0$ and $\Delta T_{\rm c} < T_{\rm h,in} - T_{\rm c,in}$,

$$RR_{per-pass} < \frac{c_p(T_{h,in} - T_{c,in})}{h_{fg}}.$$
(2)

MD is operated at a top temperature below $100\degree$ C, often in

* Corresponding author. *E-mail address:* lienhard@mit.edu (J.H. Lienhard).

https://doi.org/10.1016/j.desal.2018.07.018

Received 13 March 2018; Received in revised form 20 June 2018; Accepted 22 July 2018 0011-9164/ © 2018 Elsevier B.V. All rights reserved.

Nomenclature		U	overall heat transfer coefficient, W/m ² ·K
		ν	velocity, m/s
Roman symbols		V _o	volume of recirculation loop, m ³
		<i>॑</i> V	volume rate, m ³ /s
Α	Area, m ²	w	width, m
AGMD	air gap membrane distillation		
В	membrane permeability, kg/m ² ·s·Pa		
B_0	membrane permeability coefficient, kg/m·s·Pa	Greek symbols	
cw	specific cost of pure water, \$/m ³		
$c_{ m f}$	specific cost per unit of feed treated, \$/m ³	α	$d\rho/ds$, kg ² /g·m ³
С	cost factor, m^3 (heating, cooling) or k/m^5 (flux)	$\delta_{ m m}$	membrane thickness, μ m
$c_{\rm p}$	specific heat capacity, J/kg-K	Δ	difference
d	depth or thickness, m	μ	viscosity, Pa·s
CGMD	conductive gap membrane distillation	ρ	density, kg/m ³
DCMD	direct contact membrane distillation	τ	cycle time, s
GOR	gained output ratio = $\dot{m}_{\rm p} h_{\rm fg} / \dot{Q}_{\rm h}$		
h	heat transfer coefficient, W/m ² ·K		
$h_{ m fg}$	enthalpy of vaporization, J/kg	Subscripts, superscripts	
HDH	humidification dehumidification		
HX	heat exchanger	b	brine
J	permeate flux, kg/m ² s	с	cold
k	thermal conductivity, W/m·K	ch	feed cold channel
L	length of module, m	cond	conduction
Μ	mass, kg	crit	critical value
MD	membrane distillation	eff,m	effective membrane property
MVC	mechanical vapor compression	f	feed channel
ṁ	mass flow rate, kg/s	h	hot/heater
N _{stages}	number of stages	i	initial
NTU	number of transfer units	HX	heat exchanger
Nu	Nusselt number	in	inlet
Pr	Prandtl number	m	membrane
	heat transfer, W	max	maximum
Re	Reynolds number	MD	membrane distillation module
RR	recovery ratio of cycle	min	minimum
RR _{per-pas}	s recovery ratio per-pass through system	mu	make up
s	salt concentration, g/kg	out	outlet
t	time, s	р	permeate
ť	non-dimensional time	pw	pure water
Т	temperature, °C	ř	average over a cycle, see Eqs. (4)–(5)
TTD	terminal temperature difference, °C	· /	

combination with low-temperature heat sources. If the ambient temperature is 25 ° C, RR_{per-pass} < 13%. In practice (e.g., Ref. [1]) the recovery with single-pass MD without recirculation is much lower, around 8% due to a lower $T_{\rm f,in}$ and boiling point elevation of the salty feed stream leading to higher $\dot{Q}_{\rm m,cond}$.

In contrast, in order to achieve zero-liquid-discharge, the desalination process would have to concentrate the salt solution up to saturation concentration (260 g/kg for NaCl), at which point the solution could be passed to a crystallizer. In this study, we will focus on desalinating a NaCl feed solution at 70 g/kg up to 260 g/kg. The corresponding required recovery ratio is 1-70/260 = 72.1%, much higher than the limiting value for a single-pass system. In order to implement such a high RR in a hypothetical single-pass MD process, the feed stream would have to be heated up to 500 °C, after being pressurized to prevent boiling. Our focus is on more practical, alternatives configurations with feed recirculation.

1.2. Options for high recovery with MD

The following operation strategies enable high overall pure water recovery employing a low-recovery single stage process:

(a) batch recirculation

52

(b) semibatch recirculation

(c) continuous recirculation

(d) continuous multi-stage recirculation

Fig. 1 shows a schematic representation of these alternatives.

Continuous recirculation [Fig. 1 (c)] is operated such that the brine leaving the MD module is at the required final brine salinity, and is continuously bled out of the system. In order to produce this output brine salinity, the inlet salinity to the desalination process has to be: $s_{h,in} = s_{b,out} \times (1 - RR_{per-pass}) = s_{f,in} \times \frac{1 - RR_{per-pass}}{1 - RR}$. For the brine concentration application considered in this study, since RR > RR_{per-pass}, the recirculated feed entering the MD module is at a higher salinity than the original feed stream. The remaining brine flow after bleed out is mixed with an appropriate quantity of incoming make-up feed to reach this inlet salinity at the module inlet.

In the MD literature, continuous recirculation has been a popular method for achieving high product recovery ratio because it is a steadystate process that is easy to implement and evaluate [2-5]. Recently, Lokare et al. [6] identified and evaluated the negative impact of continuous recirculation on both energy consumption and flux.

The multi-stage recirculation process illustrated in Fig. 1 (d) combines several single stage recirculation systems in series. Multi-stage recirculation also operates at steady-state and achieves a high overall Download English Version:

https://daneshyari.com/en/article/7007609

Download Persian Version:

https://daneshyari.com/article/7007609

Daneshyari.com