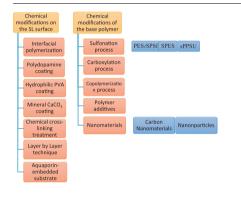
Contents lists available at ScienceDirect

Desalination

journal homepage: www.elsevier.com/locate/desal

Engineering advance

Advances in forward osmosis membranes: Altering the sub-layer structure via recent fabrication and chemical modification approaches



DESALINATION

Wafa Ali Suwaileh^a, Daniel James Johnson^a, Sarper Sarp^a, Nidal Hilal^{a,b,*}

^a Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN, UK ^b College of Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Keywords: Forward osmosis Desalination Chemical modifications Membrane fabrication Support layer Synthetic polymer Nanotechnology

ABSTRACT

The forward osmosis process has obtained renewed interest nowadays and it might become an alternative solution for many industrial applications to meet the current and future requirements for potable water. The FO process depends on the osmotic pressure gradient between a high salinity draw solute and low salinity feed solution across a semi-permeable membrane to extract pure water. Despite the potential advantages of FO, there are some technical drawbacks that hinder FO application for water desalination. One of the most significant critical challenges is the need for membrane compatible with the FO process. To improve FO desalination feasibility, membrane development is required to obtain maximum water permeability and minimum reverse solute flux over long-term operations. Therefore, this review starts by demonstrating the fundamentals and membrane development over the years. Fabrication modifications for the support layer of FO membranes and the crucial challenges of the FO process are summarized. Recent trends of the chemical modifications of the bulk and substrate are discussed. The advantages and disadvantages of the modifications on the FO membrane productivity are also addressed. Finally, concluding with future perspectives.

1. Introduction

The growth of the global population and the rise in water consumption has increased the already great pressure on water and energy systems [1]. Two alternatives for increasing water supplies involve desalination of sea or brackish water or the reclamation of wastewater [2]. A promising emerging membrane technology for purification of water is forward osmosis process which has gained immense interest

E-mail address: n.hilal@swansea.ac.uk (N. Hilal).

https://doi.org/10.1016/j.desal.2018.01.035

Received 27 November 2017; Received in revised form 25 January 2018; Accepted 25 January 2018 0011-9164/ © 2018 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN, UK.

List of abbreviations		
FO	Forward osmosis	
RO	Reverse osmosis	
TFC	Thin film composite	
PA	Polyamide	
CA	Cellulose acetate	
CTA	Cellulose triacetate	
MMM	Mixed matrix membranes	
PSf	Polysulfone	
AqpZ	Aquaporin	
NIPS	Non-solvent induced phase separation	
L-b-L	Layer by layer technique	
MPD	2-methyl-2,4-pentanediol	
TMC	1, 3, 5-trimesoylchloride	
FS	Feed solution	
DS ICP	Draw solution	
ECP	Internal concentration polarization External concentration polarization	
PES	Polyether sulfone	
pNE	Norepinephrine	
HTI	Hydration Technology Innovations	
SDS	Sodium dodecyl sulfate	
Zn ₂ GeO ₄	Nanowires	
IER-Na	Na type ion exchange resin	
PEM	Polyelectrolyte multilayer	
SA	Sodium alginate	
LiCl	Lithium chloride	
PI	Phase inversion technique	
PEG	Polyethylene glycol-electrolyte	
PRO	Pressure retarded osmosis	
NaCl	Sodium chloride	
PBI	Polybenzimidazole	
NF IP	Nanofiltration	
PBI-PES	Interfacial polymerization Polybenzimidazole-polyethersulfone	
CNTs	Carbon nanotubes	
PAI	Poly(amide–imide)	
PET	Polyethylene terephthalate	
PAN	Polyacrylonitrile	
ZnO-SiO	2 Zinc oxide-Silicon dioxide	
TiO ₂ -g-PHEMA Titanium dioxide grafted poly(2-hydroxyethyl me-		
	thacrylate)	
MWCNT	s Multiwalled carbon nanotubes	
f-CNTs	Functionalized multi-walled carbon nanotubes	
PVDF	Polyvinylidene fluoride	
SiO ₂	Silicon dioxide	
TiO ₂ PVA	Titanium dioxide	
MA	Polyvinyl alcohol Maleic acid	
PAA	Polyacrylic acid	
CP	Concentration polarization	
CEOP	Cake-enhanced osmotic pressure	
sPPSU	Sulfonated poly phenylene sulfone	
sPSf	Sulfonated polysulfone	
sPES	Sulfonated polyether sulfone	
NPs	Nanoparticles	
SO_3H	Sulfonic acid groups	
MMT	Montmorillonite	
PESU E6020P Polyethersulfone		
PPSU	Polyphenyl sulfone	
CPSF	Carboxylated polysulfone	
CPES	Carboxylic polyethersulfone	
	D Polytriazole- <i>co</i> -polyoxadiazole	
SPEK	Sulfonated poly(ether ketone)	

PFSA	Perfluorosulfonic acid	
NMP	N-Methyl-2-pyrrolidone	
GO	Graphene oxide	
CN/rGO	Graphene oxide based graphitic carbon nitride	
HNTs	Alumina-Silicates	
MWf	Functionalized Multiwalled Carbone Nanotubes	
GOT or 1	MWfT Carbon-TiO ₂ composite	
PVP	Polyvinyl pyrrolidone	
PAH	Polyallylamine hydrochloride	
$CaCO_3$	Calcium Carbonate	
HCl	Hydrochloric acid	
LDH-NPs	s layered double hydroxide nanoparticles	
PDA	Phenylenediamine	
SW	Seawater	
BW	Brackish water	
GA	Glutaraldehyde	
CMBA		
EDC Maco	N-ethyl-N(3-dimethylamino) carbodiimide	
MgSO ₄ Na ₂ SO ₄		
Ma_2SO_4 MgCl ₂	Magnesium Chloride	
PEI	Polyethyleneimine	
NaOH	Sodium hydroxide	
PEI	Polycationethyleneimine	
PSS	Polyanion polystyrene sulfonate	
H-PAN		
DOPC	1,2-dioleloyl-sn-glycero-3-phosphocholine	
DOTAP	1,2-dioleoyl-3-trimethylammo-nium-propane (chloride	
	salt)	
T-PSS	PSS-terminated double-skinned	
SLB	Supported lipid bilayer	
SO_3	Sulfonic group	
List of sy	mbals	
List of sy	IIIDOIS	
$\Delta \pi$	Osmotic pressure gradient	
π	Osmotic pressure	
V	Solution volume	
R	Ideal gas constant	
	$(1 \text{ mol}^{-1} \text{ mol}^{-1})$ Ideal gas constant unit	
T Absolute temperature in Kelvin		
	B4 Virial empirical coefficients	
σ π	Reflection coefficient Bulk osmotic pressures of the draw solute	
π _D π _F	Bulk osmotic pressures of the feed solution	
B	Salt permeability coefficient	
A	Water permeability coefficient	
E	Global error	
EXP	Experimental flux	
CALC	Calculated flux	
$k/k_{\rm F}$	Mass transport coefficient of the feed solution/solute re-	
	sistance	
D	Bulk diffusion coefficient of the draw solute	
SS_{err}	Residual sum of squares	
SS_{TOT}	Total sum of squares	
$R2_s$	Coefficient of determination for the solute flux	
τ	Membrane support layer tortuosity	
t_s	Thickness	
A/B	Selectivity ratio of membrane active layer: water perme-	
S	ability/salt permeability	
	Membrane support layer structure parameter Effective porosity	
ε _{eff} PH	Potential of hydrogen	
$D\epsilon_{eff}$	Effective diffusion constant	
M	Molar concentration	

Download English Version:

https://daneshyari.com/en/article/7007878

Download Persian Version:

https://daneshyari.com/article/7007878

Daneshyari.com