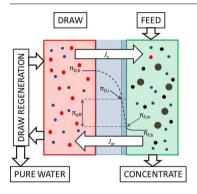

ELSEVIER

Contents lists available at ScienceDirect

Desalination

journal homepage: www.elsevier.com/locate/desal


Osmotic's potential: An overview of draw solutes for forward osmosis

Daniel James Johnson^a, Wafa Ali Suwaileh^a, Abdul Wahab Mohammed^b, Nidal Hilal^a,*

^a Centre for Water Advanced Technologies and Environmental Research (CWATER), College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN, UK
 ^b Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul
 Fibran Malaysia

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords: Forward osmosis Draw solution Membrane separation Desalination Water treatment

ABSTRACT

Forward osmosis (FO) is a membrane separation process using a highly concentrated draw solution with high osmotic potential to draw water across a semi-permeable membrane from a feed source. This feed source may be seawater, wastewater or other natural or contaminated water sources. Unlike other membrane driven purification processes, the product is not clean water, but a diluted draw solution. As a result a second step is often needed to produce a pure water product. A major advantage of FO is that the low hydrodynamic pressure involved leads to lowered fouling of membranes and greater flux recovery after cleaning, as well as often providing a low energy process which can recover clean water from difficult or highly fouling sources. Selection of an appropriate and effective draw solution is essential for the practical operation of an FO process. This review will give an overview of the theoretical underpinnings of draw solution performance and a comprehensive summary of the current literature regarding the different types of draw solutions which have been investigated and their respective benefits and detriments.

1. Introduction

Amongst the several membrane based technologies currently being developed, the process of forward osmosis (FO), also known as manipulated osmosis, is showing great promise, particularly for treatment of hypersaline, high fouling or otherwise challenging feed waters [1–8].

Unlike pressure driven membrane processes, such as reverse osmosis (RO), instead of pumping the feed water at a pressure sufficient to overcome the osmotic pressure difference between the feed and permeate, with FO it is the difference in osmotic pressure between the feed water and a more concentrated draw solution which drives the filtration process. As a result, the initial filtration step requires less

E-mail address: n.hilal@swansea.ac.uk (N. Hilal).

^{*} Corresponding author.

D.J. Johnson et al. Desalination 434 (2018) 100–120

Abbreviations B			solute permeability coefficient within membrane
		B_2 , B_3 , B_4 virial coefficients	
BSA	bovine serum albumin	B^A	solute permeability coefficient for the active layer
CA	citric acid	C	mass concentration of solutes
CQD	carbonised quantum dot	C_D	draw solute concentration
DI	de-ionised	C_F	feed solute concentration
DME	dimethyl ether	D	solute diffusion coefficient
ECP	external concentration polarization	D^A	draw solute diffusion coefficient through active layer
EDTA	ethylene diamine tetra-acetic acid	D_{eff}	effective solute diffusion coefficient
Fe(acac) ₃	ferric triacetylacetonate	d_h	hydraulic side of flow channel
FO	forward osmosis	d_p	pore diameter
HA	hyaluronic acid	d_s	solute molecular diameter
ICP	internal concentration polarization	H	partition coefficient
LCST	lower critical solution temperature	J_s	solute flux
MD	membrane distillation	$J_{specific}$	specific reverse solute flux
MED	multi-effect distillation	J_w	water flux
MFC	magnetic field control	K	solute resistivity to flow through porous membrane
MSF	multi-stage flash	k_d	mass transfer coefficient for draw solution side
NF	nanofiltration	k_f	mass transfer coefficient for feed solution side
P ₄₄₄₄ DM	BS tetra butyl phosphonium 2,4 dimethyl benexene sul-	k_m	mass transfer coefficient for membrane support layer
	fonate	M	molar concentration
P ₄₄₄₄ TMI	BS tetra butyl phosphonium mesitylene sulfonate	n	number of ions produced by draw solute dissolution
P ₄₄₄₈ Br	tri butyl octyl phosphonium bromide	N_p	number of ions
PAA	poly acrylic acid	R	fractional salt rejection
PAM	poly(acrylamide)	R_{g}	ideal gas constant
PDMAEM	A poly(2-(dimethylamino) ethyl methactylate)	s°	membrane structural parameter
PEG	poly(ethylene glycol)	Sh	Sherwood number
PNIPAM	poly(<i>N</i> -isopropylacrylamide)	T	absolute temperature (K)
PRO	pressure retarded osmosis	t_A	membrane active layer thickness
PSA	poly (sodium acrylate)	t_s	membrane support layer thickness
PSA-NIPA	M poly(sodium acrylate)-co-poly(N-isopropyl acryla-	$\overset{\circ}{V}$	solution volume
	mide)	δ	membrane constrictivity parameter
PSS	poly (sodium-4-syrenesulfonate)	ΔC	concentration gradient of solute across active layer
PSSS-PNII	PAM poly(sodium styrene-4-sulfonate- <i>co-N</i> -iso-	$arepsilon_{eff}$	effective porosity
	propylacrylamide)	π	osmotic pressure
PVA	poly (vinyl alcohol)	$\pi_{D,b}$	bulk osmotic pressure of draw solution
RO	reverse osmosis	$\pi_{D,i}$	osmotic pressure within support layer adjacent to active
SPS	switchable polarity solvents	- D,t	layer
TEM	transmission electron microscopy	$\pi_{D,m}$	osmotic pressure close to membrane (draw side)
TMA	tri-methylamine	$\pi_{F,b}$	bulk osmotic pressure of feed solution
TREG	tri-ethylene glycol	$\pi_{F,m}$	osmotic pressure at membrane active layer (feed side)
UF	ultrafiltration	σ	reflection coefficient
		τ	membrane tortuosity
0 1 1		ϕ	osmotic pressure coefficient
Symbol			
Symbol		7	

applied energy and suffers from lower fouling and scaling, with greater fouling reversibility observed subsequent to cleaning measures [9]. However, unlike other membrane processes, the end product of FO is not purified water, but rather a diluted draw solution. As a result, unless the diluted draw solution is of use of itself or the process is purely being run to dewater the feed rather than produce a useful product water, then a second separation step is necessary to both re-concentrate the draw solution for reuse and to produce a purified water product. The regeneration step requires additional energy, which in some cases may push the total energy costs above that of alternatives, such as RO or membrane distillation (MD). Shaffer et al. [3] analysed the energy efficiency of the FO process in light of this necessary regeneration step from a thermodynamic perspective, particularly in comparison with RO processes. They pointed out that the energy needed to run an FO process with draw solute regeneration cannot be less than the minimum energy of separation, a minimum which is already close to the operating parameters of recent RO designs [10]. Furthermore, they point

out that if using a regeneration process such as ultrafiltration (UF), which typically has higher water flux and would be suitable for regeneration of larger sized solutes, the energy required to re-concentrate the draw solution to its original osmotic potential would require the same energy as for using RO, as the amount of energy needed is based on the osmotic pressure difference between the concentrated and diluted draw solutions, not on the process itself [3]. In addition Field and Wu [11] studied mass transfer limitations when scaling up FO processes and found them to be more severe for FO than for other membrane applications as module size is increased, making FO less favourable at large scale than RO for seawater desalination.

However, FO still has much potential for treating hypersaline streams too concentrated for RO [12], dewatering wastewater [4,8,13,14], concentrating foods [15,16] or niche applications where draw solute does not need regeneration, such as using fertilizer as the draw solute which can then be utilized for fertigation applications [14,17–19]. In addition much research has been applied to the energy

Download English Version:

https://daneshyari.com/en/article/7007954

Download Persian Version:

https://daneshyari.com/article/7007954

Daneshyari.com