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A B S T R A C T

Marangoni hydrodynamic motion and its potential technological application in reverse osmosis (RO) process for
seawater desalination is discussed. The fundamental core idea in this note is the possibility to take advantage of
the inherent concentration gradient in a RO process. It is well known that to run a RO process, it is necessary to
apply a hydrodynamic pressure to overcome the osmotic pressure, however, by inducing a free-surface, e.g., a
Leidenfrost surface, on the membrane wall, an additional hydrodynamic Marangoni stress could be generated,
which, likewise than the osmotic pressure is driven by the concentration gradient but acting in the opposite
direction, i.e., reducing the external hydraulic pressure to be applied. Utilizing a simplified geometrical and
physical model, an analytical expression for the pressure reduction was derived. One important preliminary
result in this work, is that the Marangoni stress can provide pressure against the osmotic pressure for membrane
porous that are less than micrometric size.

1. Introduction

Reverse osmosis (RO) encompasses several of the most important
filtration process for industrial exploitation, namely: microfiltration;
ultrafiltration; and nanofiltration. In short, because molecules naturally
move from areas of high concentration to low concentration, then if it is
desired that molecules move from areas of low concentration to high
concentration it is necessary to apply an external pressure. The pressure
difference on both sides of the membrane will cause the permeate to
cross the membrane at a steady state, hence, the name pressure-driven
operation.

Whereas RO process is one of the most researched fields in mem-
brane technology and embracing many topics, e.g., optimization, new
materials, performance; [1–16], just to name a few, nevertheless, there
are still aspects which deserve an attack from a theoretical point of
view.

The object of this note was a first preliminary investigation on the
possibility of Marangoni induced stress (by inducing a free-surface) and
its use with regard to pressure-driven membrane filtration technology.
The justification behind the idea is straightforward: the salinity gra-
dient which is causing the osmosis pressure which must be overcome to
run the filtration process by applying an external hydrodynamic pres-
sure, can actually generate an opposite force (Marangoni stress) which
can counteract the osmotic pressure and then reducing the effective
applied external pressure which translates into a reduction of cost of the
filtration process.

2. Statement of the core idea

2.1. Momentum considerations

For the sake of generality, we will consider a simple problem of
motion of an incompressible viscous fluid with a certain concentration.
Let the fluid be enclosed between two parallel walls (top and bottom
walls of a rectangular membrane). Also, in the top wall a free-surface is
induced. Such a free-surface could be induced by, say, a Leidenfrost
surface created by heating the surface beyond its critical heat flux CHF,
or by injecting gas. Suffice to say, that generating a sustained
Leidenfrost surface for water or similar liquids does not requires sub-
stantial power input if one takes into account the length scale of the
porous, e.g., for the case of water the critical heat flux (CHF) is ap-
proximately 1000 kW/m2 and if one considers porous sizes of micro-
metric size or even smaller, then the power needed per porous will be
very low. Fig. 1 is a sketch of the problem considered.

Now, if it is desired to run a pressure-driven filtration operation, i.e.,
the separation of solvent from the highly concentrated solution (left
side in Fig. 1) and going to the low concentration side (right side in the
same figure), in order to do this, it is necessary to apply an external
hydraulic pressure, let us call this as Δp. This pressure must be able to
sustain the flow against the hydrodynamic forces opposing this motion
namely, skin drag friction and the osmotic pressure π. However, in
addition, because of the induced free-surface, we have an additional
force at the free-surface or Marangoni stress which is favoring the Ro-
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filtration, i.e., pushing the liquid from the high concentration towards
the low concentration. From this simple generalized picture, we can
start our momentum considerations.

To begin with, the Navier-Stokes equations for the system schema-
tically depicted in Figs. 1 and 2 is reduced to the following set of
equations, [17]
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where u is the velocity of the fluid (u= u(x)); z is the vertical axis; x the
longitudinal-axis; p is the pressure; ρ the density of the fluid; μ the
dynamic viscosity; and g the gravity.

If we express the pressure as
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then Eq. (1) can be rewritten as
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since px(x) does not depend on z coordinate.
Solving Eq. (4), we obtain
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where c1 and c2 are constants to be determined by proper boundary
conditions.

The boundary conditions are

= =u z h( ) 0 (6)

and the Marangoni stress at the free-surface z=0 results
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where γ is the surface tension of the liquid. By applying those boundary

conditions, we obtain
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which inserted into Eq. (5) yields
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Finally, the pressure drop along the plate can be calculated from the
mass fluid velocity (averaged over the depth of the liquid) as
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and after integration one obtains
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Taking into account that in our case the surface tension gradient is
driven by a concentration gradient, therefore, Eq. (11) can be rewritten
as
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where c is concentration. From Eq. (1), because u is only function of z
and px(x) of x then we deduce that = constantdp x

dx
( )x ; then, the pressure

gradient may be written as − p
l

Δ , where l is the length of the channel,
and Δp is the positive pressure drop (the inlet pressure minus the outlet
pressure). Thus, Eq. (12) becomes
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where ≈ −dc
dx

c
l

Δ , being Δc the positive change in concentration (the
high concentration minus the low concentration), and where if Δc=0
— or not free-surface exist, we recover, of course, the expression for a
fluid enclosed between two parallel planes, [17].

Finally, we need to add the additional external hydraulic pressure
needed to overcome the resulting osmotic pressure Δπ between both
sides, and then, the final expression for pressure drop is given by
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The above expression may be further simplified by taking into ac-
count that the osmotic pressure is dependent — as the Marangoni term,
of the concentration gradient. Indeed, the osmotic pressure can be ex-
pressed as a function of a certain pressure taken as reference, let us call
πo the osmotic pressure at a given reference concentration, say co, and
then the osmotic pressure can be written as

=π π
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and then, Eq. (14) can be expressed as
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because < 0dγ
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The above expression is showing clearly that Marangoni stress is
acting in the opposite direction than osmotic pressure and reducing the

Fig. 1. Physical model for the two parallel planes with a free surface at the top of the
channel.
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Fig. 2. Schematics physical model for the two parallel planes with free surface at the top.
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