Author's Accepted Manuscript

CO₂ permeation through asymmetric thin tubular ceramic-carbonate dual-phase membranes

Xueliang Dong, Han-Chun Wu, Y.S. Lin

 PII:
 S0376-7388(18)30948-7

 DOI:
 https://doi.org/10.1016/j.memsci.2018.07.012

 Reference:
 MEMSCI16291

To appear in: Journal of Membrane Science

Received date:7 April 2018Revised date:5 July 2018Accepted date:5 July 2018

Cite this article as: Xueliang Dong, Han-Chun Wu and Y.S. Lin, CO₂ permeation through asymmetric thin tubular ceramic-carbonate dual-phase m e m b r a n e s , *Journal of Membrane Science*, https://doi.org/10.1016/j.memsci.2018.07.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

CO₂ permeation through asymmetric thin tubular ceramic-carbonate dual-phase membranes

Xueliang Dong, Han-Chun Wu and Y. S. Lin*

School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, USA

nuscrile

*Corresponding author. Tel.: +1 480 965 7769, Fax: +1 480 965 0037. E-mail address: jerry.lin@asu.edu (Y.S. Lin).

Keywords: dual-phase membrane; CO₂ separation; permeation; ionic conduction

Abstract

Ceramic-carbonate dual-phase dense membrane is a promising high temperature CO_2 separation membrane with remarkable CO_2 permeance and theoretically infinite CO_2 selectivity. This paper reports synthesis and CO_2 permeation properties of asymmetric tubular dual-phase membranes with a thin samarium doped ceria ($Ce_{0.8}Sm_{0.2}O_{1.9}$, SDC)-carbonate separation layer and a thick porous SDC-Bi_{1.5}Y_{0.3}Sm_{0.2}O_{3-δ} (BYS) support. The asymmetric tubular thin (0.12 mm) dual-phase membrane has much higher CO_2 permeance and lower activation energy for permeation than the thick (1.0-1.5 mm) membranes. At 900 °C with 50%CO₂/N₂ feed at 1 atm, the CO₂ permeation flux and permeance for the thin membrane reach 1.53×10^{-2} mol·m⁻²·s⁻¹ (or 2.05 mL(STP)·cm⁻²·min⁻¹) and 3.16×10^{-7} mol·m⁻²·s⁻¹·Pa⁻¹, respectively, with activation energy for permeation of 62.5 kJ/mol. These dual-phase membranes exhibit slightly higher CO₂ permeance with essentially same activation energy

Download English Version:

https://daneshyari.com/en/article/7019579

Download Persian Version:

https://daneshyari.com/article/7019579

Daneshyari.com