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A B S T R A C T

Molecular simulations were employed to investigate osmosis for systems far from ideal conditions. Osmotic
pressure was calculated for of a fluid mixture separated from a pure fluid by a fictitious semipermeable mem-
brane using Gibbs ensemble Monte Carlo (GEMC) and compared with that of the two phases separated by a
physical amorphous polyamide membrane using molecular dynamics. The calculated osmotic pressure for these
two simulation set-ups was compared with various predictive models for a range of solute concentrations and
solution densities. Both equilibrium-based theories, which are mostly limited in their applicability to near-ideal
conditions or low solute concentrations, and non-equilibrium theories that extend to more concentrated solution
conditions fared well against the GEMC simulation in their expected range, but did not adequately predict the
osmotic pressure calculated according to simulations across the physical membrane for finite system size and
under the limiting conditions considered. The discrepancies were particularly large for high solute concentra-
tions and low solution densities. The observed differences are discussed in terms of solution inhomogeneities
resulting from particle-membrane interactions.

1. Introduction

Osmotic pressure (Π) across a semipermeable membrane results
from selective permeation of the solvent (water) towards the solute-rich
phase. While Π is generally considered to be a function of solution
conditions and permeability of the membrane, recent studies suggest
that the presence of the membrane as a physical body that exerts forces
on the environment and reacts to it (deforms) may influence the mea-
sured osmotic pressure, where the surface area to volume ratio is
comparable. Much attention has been given to predictive and semi-
empirical models that consider solution thermodynamics, but only re-
cently the role of a physical membrane has been critically analyzed.

Computer simulations provide a direct method for evaluating Π by
explicitly including a selective barrier to diffusion of one of the com-
ponents within the simulation box [1,2]. Simulations allow exact con-
trol of the size, structure, flexibility, and interaction of the membrane,
making it possible to isolate the contribution of each to the osmotic
pressure. Early computational efforts to study membrane permeability
and the osmotic effect represented membranes as either ordered arrays
of particles, or as a porous medium with well-defined and ordered
pores. Pioneering works by Murad and coworkers showed the validity
of van’t Hoff's relationship for the osmotic pressure [3] using simple
representation of semipermeable membranes modeled as an ordered fcc

lattice of a single or few molecular layers [4,5]. One of their principal
findings was the deviation from van’t Hoff's relation at low solute
fractions for nonideal mixtures where solute particles differ from the
solvent by size or interaction strength [6].

Research based on density functional theory (DFT) focused on the
structure of the fluid in the vicinity of the membrane. Bryk et al. [7]
developed DFT model for the phase behavior of a Lennard-Jones (LJ)
fluid in contact with a permeable wall of finite thickness using DFT and
showed how the permeability of the wall modifies the surface phase
behavior of the fluid when compared with an impermeable surface.
These authors later extended their model to study the structure and
thermodynamic properties of a polydisperse fluids (i.e., a mixture with
an infinite number of components) near the membrane [8]. Yang et al.
[9] tested DFT predictions for homogeneous solution using extensive
grand canonical Monte Carlo simulations, and found that the dispersion
term in the DFT functional must be corrected for better prediction in the
case of mixtures. Furthermore, the authors confirmed van’t Hoff's law at
low densities, revealing nearly identical behavior for different diameter
ratios of the solute and solvent. However, they found that the van’t Hoff
prediction underestimates the osmotic pressure beyond solute volume
fraction of ~ 0.4, where the interaction between particles begins to play
a role, similar to finding in previous studies by Murad et al. [6].

Pitzer and coworkers provided a thermodynamically rigorous
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development for the expression of the osmotic pressure, based on the
dissolution of ions in water at high ionic strengths [10–12]. The authors
introduced a variable second virial coefficient in their treatment of the
osmotic pressure of concentrated electrolyte solutions of monovalent
and divalent ions. Pitzer's model was shown to accurately predict the
osmotic pressure of 2–1 and 2–2 concentrated electrolyte solutions
[13], while simpler models that neglect solute-solvent interactions
show large deviations for molalties greater than 1.0. It should be noted,
however, that determination of the Pitzer coefficients is experimentally
difficult and hence reduces the utility of the model. Recently, solute
chemistry was also shown to play a determining role in its effect on the
osmotic pressure as it defines the effective solute size due to bound
waters, in addition to the solute-membrane interactions [14]. This ef-
fect was notable for charged as well as polar solutes. Further studies
using simplified models predicted that membranes with stronger at-
tractive interactions with the solvent molecules have significantly
larger solvent permeation rates that increase significantly with increase
in temperature [15]. Depending on their chemical nature, it was shown
that ions may not penetrate even neutral membranes due to large ion-
water clusters that have high energies of desolvation, whose large ef-
fective size prevents them from permeating the membrane [16–19].

Nanofiltration and reverse osmosis membranes used for separation
of small molecules or ions have quite a complex functionality and
structure that affect their performance. The rejection layer of most
commercially available nanofiltration and reverse osmosis membranes
is an ultra-thin film formed in situ at the interface of two immiscible
solvents, resulting in a dense layer at the reaction zone whose proper-
ties essentially determine the performance (flux and rejection) of the
membranes [20]. Molecular models reveal the highly heterogeneous
void structure of polyamide membranes [21–24], which is argued to be
the primary factor that affects water dynamics within the membrane
[25]. Recent molecular dynamics (MD) studies suggest that real mem-
branes that are an order of magnitude thicker than the simulated ones
do not have low energy pathways for ion transport and exhibit re-
sistance to ionic diffusion due to charge separation [26], while none-
quilibrium MD simulations reveal that film deformation due to flow
under pressure gradient affects film void structure and thereby the local
structure and permeability of water and ions [27]. Clearly, accumula-
tion of solute and solvent near and within the membrane affects its
rejection, and hence influences the measured osmotic effect.

In this work, we focus on the effect of solution inhomogeneous and
nonideality on osmosis. Apart for being of theoretical interest, appli-
cations of such limiting conditions include osmotic dehydration of fruits
and vegetables [28] or the extraction of essential oils [29]. We compare
the osmotic pressure calculated across a fictitious non-interacting
semipermeable barrier and across an amorphous polyamide membrane
of finite thickness. Finite systems where the surface area to volume ratio
is comparable have received increasing attention for various applica-
tions in microfluidics [47,48] and include sample concentration in
analytical chemistry, water-powered actuator based on osmosis [49],
and biologically-relevant phenomena or biotechnological applications
such as osmotically driven flow in microchannels [50], drug delivery
[51], and osmotic pumps to induce concentration gradients [52]. We
analyze the range of applicability of the van’t Hoff equation, of simple
thermodynamic models for non-ideal solutions, and of the mechanical
model of Granik et al. [30] for the two membrane configurations. The
Granik model was chosen for comparison as it was recently shown to
fare well with experimental results for sucrose [31], though with a
tendency to overpredict the osmotic pressure at higher solute densities.

2. Methods

2.1. Theoretical models of osmotic pressure

The van’t Hoff equation is commonly used for approximating the
osmotic pressure Π for dilute solutions,

= RTcΠ 2 (1)

where R is the universal gas constant, T is the temperature, and c2 is the
concentration of the solute. The simple form of the van’t Hoff equation
arises from the assumption of solution ideality, such that the osmotic
effect is accounted for only by the entropy of mixing. In other words,
chemical interactions within the system are neglected.

The Gibbs-Duhem equation relates the solvent activity to the solute
activity and allows for a more rigorous evaluation of the osmotic
pressure by accounting for the non-ideal solute-solvent interactions.
Accordingly, the osmotic pressure of two systems separated by a
semipermeable membrane and in thermal equilibrium is related to the
solvent activity coefficient by
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where P0 is pressure of pure solvent compartment, v is the partial vo-
lume, x1 is the mole fraction of the solvent in the mixture, and γ is the
activity coefficient at the temperature and pressure of the mixture. For
incompressible solutions, the partial molar volume can be assumed
constant for a given temperature. If the dependence of the partial vo-
lume on pressure is neglected, simple integration of Eq. (2) results is an
explicit formula for osmotic pressure,

= − RT
v

x γΠ ln( ).1 (3)

The activity coefficient in Eqs. (2) and (3) contains all contributions
to non-ideality of the solution, such as molecular size, specific and
nonspecific interactions. This approach was recently studied as a means
of calculating activity coefficient directly from osmotic pressure mea-
surements [2].

Ferrari and coworkers [30] derived an expression for the osmotic
pressure for incompressible fluids based on the flux of diffusing species.
Their expression in the case of pure solvent and a binary solution se-
parated by a semipermeable membrane is given by

=
+ +

RTm V
V m m

Π
1 (1 ) /

2

2 1 (4)

where m1 and m2 are the volume molal concentrations of the solvent
and solute, respectively, and V is the solution volume. All of the above
expressions (Eqs. (1)–(4)) are derived from fundamental relations and
hence they necessarily impose limitations beyond their explicit as-
sumptions, particularly ones involving membrane structure and inter-
actions. These models are therefore limited in their validity towards
conditions of practical system. To broaden their range of applicability,
empirical adjustable parameters and correlations are often used for
practical applications for a given system of interest.

2.2. Computational methods

2.2.1. Force field
The molecular models considered involve interaction between

neutral spherical particles (solvent, solute, and membrane) modeled by
the shifted Lennard-Jones (LJ) potential,
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rij is the distance of two interacting particles i and j. σij and εij are the
Lennard-Jones interaction parameters corresponding to effective par-
ticle diameter (units of distance) and interaction potential (units of
energy), respectively. All calculated quantities are given in reduced LJ
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