Author's Accepted Manuscript

Leakage evolution and atomic-scale changes in Pdbased membranes induced by long-term hydrogen permeation

T.A. Peters, P.A. Carvalho, J.F. van Wees, J.P. Overbeek, E. Sagvolden, F.P.F. van Berkel, O.M. Løvvik, R. Bredesen

www.elsevier.com/locate/memsc

PII: S0376-7388(18)31099-8

DOI: https://doi.org/10.1016/j.memsci.2018.06.008

Reference: MEMSCI16225

To appear in: Journal of Membrane Science

Received date: 24 April 2018 Revised date: 26 May 2018 Accepted date: 5 June 2018

Cite this article as: T.A. Peters, P.A. Carvalho, J.F. van Wees, J.P. Overbeek, E. Sagvolden, F.P.F. van Berkel, O.M. Løvvik and R. Bredesen, Leakage evolution and atomic-scale changes in Pd-based membranes induced by long-term hydrogen permeation, *Journal of Membrane Science*, https://doi.org/10.1016/j.memsci.2018.06.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Leakage evolution and atomic-scale changes in Pd-based membranes induced by long-term hydrogen permeation

T.A. Peters¹, P.A. Carvalho¹, J.F. van Wees², J.P. Overbeek², E. Sagvolden¹, F.P.F. van Berkel², O.M. Løvvik¹, R. Bredesen¹

Abstract

The long-term operation of a ceramic-supported 5 micron-thick Pd membrane at 450 °C and 27 bar with a feed representing steam-methane-reforming conditions has been monitored over a period of 100 days. Subsequently, a thorough characterisation of the exposed membrane has been performed to investigate leakage behaviour and microstructural changes to the membrane occurring during the long-term membrane operation. Initially, a H₂ permeance of 2.8·10⁻⁴ mol·m⁻²·s⁻¹·Pa^{-0.5} and a H₂ permeate purity of 99.8% have been obtained. During continuous operation over 100 days, however, a slow but gradual decrease in H₂ purity has been observed at a close-to-constant H₂ permeance. Post-process leakage behaviour has indicated that the increase in leakage is mainly caused by an increase in the Knudsen flow contribution, reflecting an increase in either the amount or size of nano-sized defects. A rising water test shows that these nano-sized defects are almost evenly distributed over the membrane length. Observation of the membrane cross-section revealed the formation of cavities that grew to sizes up to tens of nanometers, as a result of molecular recombination of hydrogen at low-energy sites such as dislocation walls and high-angle grain boundaries. The spherical shapes of the bubbles point to these being energetically favorable, which may be consistent with comparably high surface tensions. Therefore, the cavities observed are believed to be filled with hydrogen and stabilized by an internal pressure, that effectively counteracts the strong effect of surface energy at these small scales. The cavities may represent the origin of pinhole formation, and the atomic mechanisms behind the observed behavior are discussed and directions for enhancing the microstructural stability of Pd-based membranes are pointed out.

¹ SINTEF Industry, P.O. Box 124 Blindern, N-0314, Oslo, Norway

² Energy Research Centre of the Netherlands (ECN part of TNO), P.O. Box 1, 1755 ZG Petten, The Netherlands

Download English Version:

https://daneshyari.com/en/article/7019705

Download Persian Version:

https://daneshyari.com/article/7019705

<u>Daneshyari.com</u>